COMPLETE M CONVEX ALGEBRAS WHOSE POSITIVE ELEMENTS ARE TOTALLY ORDERED
A. EL KINANI, M.A. NEJJARI & M. OUDADESS

Abstract: We show that unitary and complete $l. m. c. a.'s$ endowed with certain orders are actually locally C^\ast-algebras or even reduce to the complex field.

Keywords: Positive elements, $l. m. c. a.$, locally C^\ast-algebra.

1. Introduction

The aim of this note is to extend to locally m-convex algebras the results of [3]. The matter is then to study the structure of unitary and complete $l. m. c. a.'s$ whose positive elements are totally ordered; and this relatively to the orders defined by the cones $A_+ = \{x \in \text{Sym}(A) : Spx \subset R_+\}$ and $P = \{x \in A : V(x) \subset R_+\}$. In a locally C^\ast-algebra (which is of course hermitian), we always have $A_+ = P$. As a converse, we show that, in a complex unital hermitian and complete m-convex algebra, if $A_+ \subset P$, then it is a locally C^\ast-algebra (Theorem 3.1). It is also known that in a locally C^\ast-algebra, the cone of positive elements is partially ordered and $A_+ = P$. One may ask whether or not it can be totally ordered. In fact, the last condition appears to be restrictive as propositions 3.2 and 3.4 show.

2. Preliminaries

Let $(A, (\| \cdot \|)_\lambda)$ be a complex unitary and complete locally m-convex algebra ($l.m.c.a.$ in short). It is known that $(A, (\| \cdot \|)_\lambda)$ is the projective limit of the normed algebras $(A_\lambda, \| \cdot \|_\lambda)$, where $A_\lambda = A/N_\lambda$ with $N_\lambda = \{x \in A : \|x\|_\lambda = 0\}$, and $\|x\|_\lambda = \|x\|_\lambda$, $x_\lambda \equiv x + N_\lambda$. An element x of A is written $x = (x_\lambda)_\lambda = (\pi_\lambda(x))_\lambda$, where $\pi_\lambda : A \to A_\lambda$ is the canonical surjection. The algebra $(A, (\| \cdot \|)_\lambda)$ is also the projective limit of the Banach algebras A_λ, the completions of A_λ's. The norm in A_λ will also be denoted by $\| \cdot \|_\lambda$. The numerical range of an element

2000 Mathematics Subject Classification: 46K99, 46H20.
\(a \in A \) is denoted by \(V(a) \). Recall that \(V(a) = \bigcup_{\lambda} V(\hat{A}_\lambda, a_\lambda) \), where \(V(\hat{A}_\lambda, a_\lambda) \) is the numerical range of \(a_\lambda \) in the Banach algebra \(\hat{A}_\lambda \). We consider the subsets \(P = \{ x \in A : V(x) \subset R_+ \} \) and \(H = \{ x \in A : V(x) \subset R \} \). The first subset is said to be the cone of positive elements, of \(A \), relatively to the numerical range. Let \((A, \langle |.| \rangle_\lambda) \) be a l.m.c.a. endowed with an involution \(x \mapsto x^* \). The set of all hermitian elements (i.e., all \(x \) such that \(x = x^* \)) will be denoted by \(\text{Sym}(A) \). We say that the algebra \(A \) is hermitian if the spectrum of every element of \(\text{Sym}(A) \) is real ([2]). It is said to be symmetric if \(e + xx^* \) is invertible, for every \(x \) in \(A \). Put \(A_+ = \{ x \in \text{Sym}(A) : Sp(x) \subset R_+ \} \), the set of all positive elements, of \(A \), relatively to the involution. If \(A \) is symmetric then \(A_+ \) is a convex cone. A locally \(C^* \)-algebra ([4]) is a complete l.m.c.a. \((A, \langle |.| \rangle_\lambda) \) endowed with an involution \(x \mapsto x^* \) such that, for every \(\lambda \), \(|x^*|_{\lambda} = |x|_{\lambda}^* \), for every \(x \in A \). Concerning involutive l. m. c. a.'s, the reader is referred to [2]. In the sequel, all algebras are complex. The spectral radius will be denoted by \(\rho \) that is \(\rho(x) = \sup \{|z| : z \in Sp(x)\} \), where \(Sp(x) \) is the spectrum of \(x \).

3. Structure results

It is not always true that \(A_+ \subset P \) as the following result shows.

Theorem 3.1. Let \((A, \langle |.| \rangle_\lambda) \) be an involutive commutative, unitary, complete and hermitian l.m.c.a. If \(A_+ \subset P \), then \(A \) is a locally \(C^* \)-algebra for an equivalent family of semi-norms.

Proof. Since the algebra is hermitian, we have \(\text{Sym}(A) = A_+ - A_- \) for \(h = (h^2 + e) - (h^2 - h + e) \), for every \(h \in \text{Sym}(A) \). On the other hand, \(A_+ \) satisfies the following condition

\[
(e + u)^{-1} \in A_+ \text{ for every } u \in A_+.
\]

(1)

Now \(P_\lambda = \pi_\lambda(P) \subset \hat{P}_\lambda \) where \(\hat{P}_\lambda = \{ a \in \hat{A}_\lambda : V(\hat{A}_\lambda, a) \subset R_+ \} \). But \(\hat{P}_\lambda \) is normal; whence the normality of \(P \) follows and so the one of \(A_+ \). The convex cone \(\pi_\lambda(A_+) \), in \(\hat{A}_\lambda \), is stable by product, normal and satisfies (1). By ([1], proposition 12, p. 258), we have \(\pi_\lambda(A_+) \subset \{ u \in \hat{A}_\lambda : Spu \subset R_+ \} \). The closed convex cone \(K_\lambda = \pi_\lambda(A_+) \) satisfies also these properties. Put \(B_\lambda = K_\lambda - K_\lambda \), a real subalgebra, of \(\hat{A}_\lambda \), generated by \(K_\lambda \). It is closed by ([1], theorem 2, p. 260). We now show that the complex subalgebra \(B_\lambda + iB_\lambda \) is closed in \(\hat{A}_\lambda \). Using the normality of \(K_\lambda \), one obtains that, for every \(\lambda \), there is \(\beta_\lambda > 0 \) such that, for every \(h \in B_\lambda \), \(\|h\|_\lambda \leq \beta_\lambda \|h + ik\|_\lambda \), for every \(k \in B_\lambda \). Whence the closedness of \(B_\lambda + iB_\lambda \). But \(A_\lambda = \pi_\lambda(A) \subset B_\lambda + iB_\lambda \). Hence \(B_\lambda + iB_\lambda \) is dense in \(\hat{A}_\lambda \). Whence \(B_\lambda + iB_\lambda \subset \hat{A}_\lambda \). By ([1], theorem 2, p. 260), we have \(Sp(h) \subset R \), for every \(h \in B_\lambda \). Moreover \(B_\lambda \cap iB_\lambda = \{0\} \), due to the normality of \(K_\lambda \). Hence a hermitian involution \((h + ik)^* = (h - ik) \).
$h-ik$, is defined on \widehat{A}_λ. At last, again the normality of K_λ implies $\|h\|_\lambda \leq \alpha \varrho(h)$, for some $\alpha > 0$ and every h in B_λ. We conclude by a result of Ptàk ([6]; (8.4) Theorem).

If the order is total, we do not need the commutativity and the conclusions show that this condition is very strong.

We begin with the order associated to A_+.

Proposition 3.2. Let $(A, (|.|)_\lambda)$ be an involutive, unitary and complete l. m. c. a. If (A_+, \leq) is totally ordered, then $A_+ = R_+$.

Proof. We first show that $g(x) < +\infty$, for every $x \in A_+$. Since the order is total on A_+, we have $x \leq n$ or $n \leq x$, for every $n \in N^*$. If $Sp x$ is unbounded, then $n \leq x$, for every n, a contradiction with $Sp x \not\subseteq \emptyset$ ([5]). Suppose now that $x \in A_+$ and $0 \in Sp x$. For every $\alpha > 0$, one gets $x \leq \alpha$, for otherwise $x < 0$. Whence $Sp x = \{0\}$ and hence $x = 0$. On the other hand, if $x \in A_+$ and $0 \not\in Sp x$, put $m = \inf \{\beta : \beta \in Sp x\}$. Then one has $0 \in Sp (x - m)$ otherwise $x - m$ would be invertible and $g((x - m)^{-1}) = +\infty$; a contradiction for $(x - m)^{-1} \in A_+$. Hence $x = m \in A_+$.

An interesting application of this proposition is contained in the following result.

Corollary 3.3. Let $(A, (|.|)_\lambda)$ be an involutive, unitary and complete l. m. c. a. If (A_+, \leq) is totally ordered, then

(i) $\{x \in \text{Sym}(A) : Sp x \subseteq R\} = R$,

(ii) If A is hermitian, then $A = C$.

Proof. (i) Every $x \in \text{Sym}(A)$ with $Sp x \subseteq R$ can be written $x = (x^2 - c) - (x^2 - x + e)$. And then the assertion (ii) follows immediately from (i).

We now examine the order associated to P

Proposition 3.4. Let $(A, (|.|)_\lambda)$ be a unitary and complete l. m. c. a. If (P, \leq) is totally ordered, then $P = R_+$.

Proof. Let $x \in P$ and $r = \inf \{\alpha : \alpha \in V(x)\}$. Then, for every $n \in N^*$, we have $x \leq r + \frac{1}{n}$; otherwise there is $n_0 \in N^*$ such that $r + \frac{1}{n_0} < x$, i.e. $V(x - r - \frac{1}{n_0}) \subseteq R_+$. Due to the definition of $V(x - r - \frac{1}{n})$, one immediately checks that $r + \frac{1}{n_0} < \alpha$, for every α in $V(x)$. Hence $r + \frac{1}{n_0} \leq r$; a contradiction. Now $x \leq r + \frac{1}{n}$ means $\beta \leq r + \frac{1}{n}$, for every β in $V(x)$. So $V(x) \subseteq [r, r + \frac{1}{n}]$, for every n. And since $V(x)$ is non void, we get $V(x) = \{\beta_0\}$. Whence $x = \beta_0$.

We have the following consequence.

Corollary 3.5. Let $(A, (|.|)_\lambda)$ be a unitary and complete l. m. c. a. If (P, \leq) is totally ordered and $A = H + iH$, then A is isomorphic to C.

Proof. Since every $h \in H$ can be written $h = \frac{1}{2} \left[(h + e)^2 - (h^2 + e)\right]$, it is sufficient to show that $h^2 \in P$, for every $h \in H$. Let $p, q \in H$ such that
\[h^2 = p + iq. \] We have \[h^2 = p_\lambda + iq_\lambda \] in \(\overline{A}_\lambda \) for every \(\lambda \), with \(p_\lambda, q_\lambda \in H_\lambda \), where \(H_\lambda = \{ u \in A_\lambda : V(A_\lambda, u) \subset R \} \). The identity \(h_\lambda h^2 = h^2 h_\lambda \) yields \(h_\lambda p_\lambda - p_\lambda h_\lambda = i(q_\lambda h_\lambda - h_\lambda q_\lambda) \). Whence \(h_\lambda p_\lambda - p_\lambda h_\lambda \in H_\lambda \cap iH_\lambda \) ([1], lemma 2, p. 206). Hence \(h_\lambda p_\lambda = p_\lambda h_\lambda \); and so \(p_\lambda q_\lambda = q_\lambda p_\lambda \). We then have \(V(h^3) \subset Co(Sphh^3) \subset R_+ \), where \(Co \) stands for the convex hull. The first inclusion is due to [1], lemma 4, p. 206. It follows that \(V(h^2) \subset R_+ \). □

References

Address: Ecole Normale Supérieure, B.P.5118-Takaddoum, 10105 Rabat, Maroc
Received: 15 May 2001