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REFINED SOLUTIONS OF SOME INTEGRAL EQUATIONS
HaNs TRIEBEL

Abstract: The paper deals with linear and semi-linear integral equations in Sobolev spaces
H;(]R" ). The main aim is to extend the resulting a.e. validity of the corresponding equations with
respect to the Lebesgue measure to an p-a.e. validity for some Radon measures p
in R™.
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1. Introduction

Let 1 <p <oc and s > 0. Let H;(R") be the usual Sobolev space in R™. Let
k € L1(R") and h € H;(R™). If € > 0 is small, then by Banach’s contraction
theorem,

u(e) = ¢ [ k) e y) dy -+ hia), (1)
R~

has a (uniquely determined) solution u € Hy(R™). In particular, (1) holds a.e. (al-
most everywhere) with respect to the Lebesgue measure py, in R™. If, in addition,
s > 2, then H;(R™) is continuously embedded in the space C(R™), consisting
of all bounded uniformly continuous functions in R™. In particular, by the usual
interpretation, there is a (uniquely determined) representative u € C(R™) in the
respective class [u] € HJ(R™) . Choosing these continuous representatives both for
x € R". In case of s = 0, which means HS(]R") = Lp(R™), no improvement of
the pp-a.e. validity of (1) can be expected. The paper deals with the problem of
improved validity in Hj(R™)if

l<p<oo and 0<s<

(2)

33

We ask for Radon measures p in R™ such that (1) with h € H;(R™) holds for
suitable representatives not only p,-a.e., but y-a.e. This will be the case, in rough
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terms, if the trace
try ©  Hp(R™) = Li(I',p) with T = suppp, (3)

ma_.k_eﬁ sense. Then it comes out fbaf the validitv of {1\ can be nvfnpr]ed 1y_

a
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J
some fractal sets, boundaries of domains etc. having Lebesgue measure zero, in
dependence on p and s. Our arguments are qualitative and (1) might be considerd
a8 a simple model case which can be generalized in many respects. This will not
be done here with the following exception. If u(z) is real, then the truncation

operator Tt is given by

e to
e. o

Tt . u(z) — uy(z) = max(u(z),0). (4)

Replacing in addition k(y) in (1) by some more general, but real, kernel k(z,y),
we ask for refined solutions of the semi-linear integral equation

u(z) = / K(#,9) v (2 — ) dy + h(z) (5)
Rﬂ.

in the real Sobolev space HZ (R™). This paper might be considered as a complement
and continuation of some relevant parts of the recent book [9]. In section 2 we
collect some notation, definitions, and prerequisites. Results, proofs, and examples
are given in section 3.

2. Notation, definitions, prerequisites

2.1. Basic notation. Let N be the collection of all natural numbers and let
No = NU {0}. Let R™ be euclidean n-space, where n € N; put R = R!. Let
S(R™) be the Schwartz space of all complex-valued, rapidly decreasing, infinitely
differentiable functions on R™. By S’'(R™) we denote its topological dual, the space
of all tempered distributions on R™. As usual, Z is the collection of all integers;
and Z", where n € N, denotes the lattice of all points m = (my,...,m,) € R®
with m; € Z.

We collect some more specific notation in connection with measures. Let QJm e

I T
a cube in R™ with sides parallel to the axes of coor dinates, centred at 2~7m and

with side length 277 where m € Z" and j € Ny. If Q isa cubein R” and r > 0
then rQ is the cube in R™ concentric with @ and with side length r times the
side length of Q.

2.2. Spaces. As usual, L,(R™) with 1 < p < 00, is the standard Banach space
of complex-valued p-integrable functions f with respect to the Lebesgue measure

pr, normed by
1

/ \ P
I712,(R")] = (m/ If(m)l‘”dw) . ©)
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Let A = E?zl 8%27. be the Laplacian, where z = (z1,...,2,) € R™. The (complex)
Sobolev spaces ’

H)(R"), l<p<oo, s€ER, (7)
are defined (and normed) by lifting
H(RY) = (id - A)F L, (R") ®)

in §’(R™). The corresponding real Sobolev spaces are denoted by HZ(R™)
(only values s > 0 are of interest).

2.3. Radon measures. Let pu be a Radon measure in R™ with
= suppp compact; and p(R™)= u(l) < oo, 9)

interpreted in the usual way as a tempered distribution p € S'(R™). We wish to
classify these Radon measures with respect to function spaces. We follow essentially
9], 9.25, p. 145. Let

l1<v<o0 and t2>0. (10)

Then

1

(Z > 24 u(2Qsm)" \ : (11)

\] 0 meZn

A discussion of these characteristic numbers of a Radon measure g with (9) may
be found in [9], 9.26. Let, by definition, M! be the collection of all those Radon
measures g in R™ with pf < 0o. In 3.2 we introduce the local class MH¢,

2.4. Representatives. If s > 0 then H3(R") is a subspace of Li°*(R"). In
particular, in any class [f] € H;(R") one can select the (uniquely determined)
representative f with

lm 8@ [ 176) - s@)dy =0 (12)
B(z,r)

pr-a.e. in all Lebesgue points of f. Recall that py stands for the Lebesgue me-
asure in R™. Furthermore B(z,r) is a ball in R™ centred at £ € R™ and of radius
r. As usual, |B(z,r)| = pr(B(z,7)) is the volume of B(x,r). As a consequence
of (12) one has pp-ae.

f@) = lim 1B [ s (13

B(z,r)

Of course, (13) means that the right-hand side converges and that the respective
limit equals f(z). If s > % then f with (12) is the continuous representative

i FarRpN on P crice HHO/MNY __ 7 fmn\
mentioned in the Introduction. If s = 0, hence Hp(R™) = Ly(R™), then one can

hardly say more than the pr-a.e. convergence in (12) and (13). To clarify the
situation if 0 < s < % one needs the notion of capacity.



146  Hans Triebel

2.5. Capacity and representatives. Let I be a compact set in R™ and let p
and s be given by (2). By [1], Definition 2.2.6, p. 20, complemented by Corollary
2.6.8, p. 44,

Cep(T) = inf {Jj| HE®™)|” : € S(R™), p>1onT) (14)

D o

lD (,d.ueu blle \b,p) (.,dpd-(.,lby ()l L . nere Blle d.(lllllbbeu 1ui‘1 CULOILId (p are 1 d.l .llllb
notion can be extended to arbitrary sets E in R™, [1], p. 19. A property is said to
hold (s, p) -quasi-everywhere, (s,p)-q.e. for short, 1f it is true for all z € R™ with
exception of a set E with C; ,(F) = 0. By [1}, 6.1, 6.2, pp. 157- 159, it follows that
in each equivalence class [f] € Hj(R™) there is an uniquely determined represen-
tative f such that (12), and, hence, (13), hold (s, p)-q.e. This representative can
be described in terms of the lifting (8) as

f=(Gd-A)"%g with g€ L,(R"), (15)

where ¢ is uniquely determined. It coincides with the representative discussed in
2.4, As we shall see, (s,p)-q.e. in (12), (13) is much more than p-a.e.

2.6. Traces. Let p be a Radon measure in R™ satisfying (9). Let Hp(R") with
s> 0 and 1 < p < oo be the Sobolev spaces introduced in 2.2. If ¢ € S(R"),
then, of course, the pointwise trace,

tru: p € S(R™) = T € Li(T, p) (16)

makes sense. We ask whether there is a constant ¢ > 0 such that

Htrue |ILA(T, )| < clle| Hy(R™) || (17)

for all ¢ € S(R™). If this is the case then one can extend (17) from S(IR") to
H3(R™) by completion, where we use that S(R™) is dense in H;(R™) = Fj,(R"),

[6} 'T‘hor\ron-\ ‘) ? 3 , P AR ‘Mo rofar to [0] cor-hr\n 0 fnr a more Anfnl]or] r‘lcnncﬂ]nn

In this way, any f € Hy(R") has a (unlquely determmed) trace tr,f € L1(T, p),
and

try = Hp(R™) & L1(T, p) (18)

is denoted as trace operator. Let f € H;(R™) be the representative according to
(15). In particular, (12) and (13) hold (s, p)-q.e. By the arguments in [9], 19.5,
pp. 260-263, (which will be repeated and complemented below) it follows that we
have (1')\ anr] (1 Q\ p-a.e. on r (nr on R*, which is the Qamp\ In nnrhml]nr fr f

can be deﬁned dlrect:ly by (13). F‘urther information and references may be found
in [9], 19.5, 19.6, pp. 260-264.
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2.7. Pointwise multipliers and the spaces L,(C?)(R?"). As said we are not
only interested in kernels k(y) in (1) but also in the more general kernels k(z, y)
in (5). This will be based on pointwise multipliers in H,(R™). We describe what
we need. Recall that C7(R™) with o > 0 are the classical Hlder-Zygmund spaces
(Holder spaces if 0 < o € N, what is sufficient for us). Explicit descriptions may
be found, for example, in (6], 2.2.2, p. 36. Let

0>5>0 and 1<p<oo. (19)

Then there exists a positive constant ¢ such that
lgf | HZ(R™) |} < cllg|C?(R™)|| - || f | Hy (R™) | (20)

for all g € C7(R™) and all f € Hj(R"™). This is a special case of the pointwise
multiplier assertion in (7], Corollary on p. 205. We use this multiplier property
in connection with the kernels k(z,y) belonging to some hybrid function spaces.
Let o > 0. Then L1(C%)(R?") is the collection of all (complex-valued) functions
k(z,y) with z € R*® and y € R™ such that

Ik 1L (C7) (B2 = / Ik (- y) €7 (R dy < co. 1)
mﬂ

We refer to [9], 27.2, 27.3, p. 391, for further details.

2.8. Truncation. Let s > 0 and 1 < p < 0. Recall that H(R") is the real part
of Hy(R™). Then the truncation operator T, introduced in (4), makes sense. Let
1
l1<p<oo, 0<s<1l+~. (22)
p
Then there is a positive number ¢ such that
1T FIHZ(R™)|| < c || f|Hy(R™)]| for all f € HI(R™). (23)

Hence, T is a bounded (non-linear) operator in Hj(R™). This assertion may be
found in [4], p. 355. We refer also to [9], section 25, where we studied truncation
wmmal ] s P mrmnans DS (TDMNY o d LS ST o A4 C1 T ekl o 1tao . 09N
plUUlClllD 111 DPGLCD ) \Ll\ , ally i1 \u\ ) 11l J4cuall. 111 Pd.-l blbuldl, lllﬁqudllby \40}
is a special case of [9], Corollary 25.11, pp. 378-379. We need this mapping property
in connection with the semi-linear integral equation (5).
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3. Results, proofs, and examples

3.1. Proposition. Let u be a Radon measure in R™ with (9). Let M} be the
classes of measures introduced in 2.3. Let

1 1 n
p<oo, —+—==1, 0<s<—. (24)
p 7 P
Let H; (R™) be the Sobolev spaces and Cs,p be the related capacities according

to 2.2 and 2.5, respectively.
(i)  The trace operator try, in (18) exists according to 2.6 if, and only if, u €
g
M, .
s -8 .
(i) Let p€ M} . There is a positive number c such that
p(K) < cCp(K) (25)
for all compact sets K in R™.

(i) Let pe Mp%,_s. For any representative f in Hj(R™) according to (15),
both (12) and the equality (13) are valid p-a.e.

Proof. Part (i) is essentially a special case of [9], Theorem 9.9(ii), p. 131. We
prove part (ii). Let ¢ € S(R™) be real with ¢ > 1 on K. By part (i) and (17) we
have

() < /Iso(w)l” u(dz) < cllo | H2(®™) 7. (26)
R'n.

Now (25) follows from (14). Finally we prove part (iii). For any £ > 0 there is an
open set E. in R™ with C;,(E:) < € such that

1B [ 1f6) - f@ldy=0, seRME. (@
B(x,r)

This follows from [1], pp. 19 and 159. Let K. be a compact set with K, C E;.
Then it follows from (25) that

p(Ke) cCsp(Ke) £ cCop(Ee) < ce. (28)
Since p is a Radon measure we have
p(Ee) = sup {u(K.) : K compact, K. C E.} (29)

and, consequently,

#(Ee) € cg, (30)

where c is independent of €. Now one may choose a monotonically decreasing
sequence of these open sets E., with €; — 0. Then

pE)=0 with E=[)E,, (31)
ji=1

and we have (12) and (13) for all z € R™\E. [ |
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3.2. Integral equations; the class M%"°. As outlined in the Introduction we
deal with the integral equations (1) and (5) in Hy(R™) and H(R™), respectively,
and we wish to extend the a.e. (with respect to the Lebesgue measure) validity of
these equations as much as possible. But there is a significant difference between
these two equations. First we look at (1). Let 1 <p < o0, s> 0, and

he HiRY), ke Ly(R"). (32)

There is a number ¢ > 0 such that for any € with 0 < £ < gy the equation (1) has
a uniquely determined solution « € Hj(R™). This is an immediate consequence
of Banach’s contraction theorem applied in H;(R™). If, in addition, s > 2 | then,
as discussed in 2.4, one may choose both for u and h the respective continuous
representatives. Since the integral in (1) is also continuous one can extend (1) from
pr-ae. to all z € R™. (Recall that u;, is the Lebesgue measure). As for classical
and more recent sharp embeddings we refer to [5], 2.8; [6], 2.7; [4], 2.2; and [9],
11.4. In particular, if 1 < p < 00 and 0 < s < % then there is no continuous
embedding of H,(R") in the space C(R™), consisting of all bounded and uni-
formly continuous function in R™. In particular, the distinguished representatives
for u und h according to 2.4 and 2.5 are no longer necessarily continuous. One
may ask whether (1) is valid not only pr-a.e. but also p-a.e. for some locally

finite Radon measures in BR™. For this purnose we extend the class ‘]l/ft ~f finite

2200 A0 TNNCASULES VLI Pl pAass WO TAUTLIM vl Liawoo Ui LU

Radon measures in R", introduced in 2.3, to locally finite Radon measures in R™.
A Radon measure p 'm R™ is called locally finite if

p(B) <oco foranyball B in R™. (33)

Then the restriction p|B of p to B is a finite Radon measure. We collected
the measure-theoretical background in [9], p. 2, with references to the literature,
especially to [3]. Again let

l<v<oo and t2>0. (34)

Then

MH°° = {4 : ulocally finite Radon measure in R®

with p|B € M for all balls B in R"}. (35)

-s,loc

Then one can apply Proposition 3.1(iii) to u € M > and identify u and h in
(1) with their respective representatives. Afterwards it remains to check that the
integral in (1) exists also p-a.e. This is the case as we shall see.

As for the semi-linear equation (5) the situation is different. Under the restriction
(22) we have the truncation property (23). But with exception of s = 0, which

n i —~ e~ Patal r - we oo ~
means HP(R ) LP(R ), the operator T+ has poor \,uﬂtuu,ub‘y pxuyuntxco We

discussed this problem in detail in [9], section 25. Then Banach’s contraction the-
orem cannot be applied in HZ(R"™) with s > 0. We circumvented this difficulty in
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(9], section 27, with the help of the so-called Q-method, which has a wider range of
applications. It is one aim of this paper to show that for the comparatively simple
equation (5) one has more direct arguments. But as in case of equation (1) we are
mainly interested in extending the uy-a.e. validity of (5) to a u-a.e. validity with
A Mj_s’loc. As for (1), the restriction s < % is natural. But in case of (5) it se-
ems to be reasonable to distinguish between the two regions in the (%, s)-diagram
below the line s =1+ % as indicated in Fig. 1.

A
S

s=1+

"3 =

3=

Fig. 1 (n>3)
3.3. Theorem. (i) Let n €N,

n - .
U35

IA

o3

1 & o A~ 1 — 1
1N PN, T — 1,

1
'3

-

There is a positive number €¢ such that for any € with 0 < € < g and any
ke Hy(R"),

w(z) = ¢ / k() ulz — y) dy + h(z) (37)
Rn

n __
lirtion s € ITS(RAY Tt . c Arp  540°

Py 1 . Do d T F
L OWIULIVHL W O Ll U . 400 b T LVE a(_(.\.uu.uzs v

hac a nminn
Al mu\‘u

o
Let both u and h be the distinguished representatives according to 2.5. Then (37)
is valid p-a.e. (almost everywhere with respect to p).

e i ks o svmaie A b
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(i) Let neN,
1
l1<p<oo, g <s<1+5 and k€ Li(C7)(R*") real, (38)

according to 2.7 with o > s. There is a positive number €¢ such that for any ¢
with 0 < e < o and any h € H;(R™),

u(e) = ¢ [ Ko,p)us(@—y) dy + o) (39)
Rﬂ

has a unique solution u € H(R™). Let both u and h be the continuous repre-
sentatives. Then (39) is valid for all x € R™.
(iii) Let n€N,

1 1 1

l<p<oo, -+==1, 0<s<—, s<l4+-, and ke L(C%)R™)
p P p

(40)

real, according to 2.7 with o > s. There is a positive number €¢ such that for any

h € Hy(R™), (39) has a unique solution HZ(R™). Let p € Mj—s’loc according to

DD nnd 20 T~ Lnth AR 1ok y 1
2.3 and 3.2. Let both v and h be the distinguished representatives

2.5. Then (39) is valid p-a.e.

<13

Proof. Step 1. We prove (i). Let A,

(Au)() = € / k(y)u(z - y)dy+ h(z), ue HLR™). (41)
R~

Then A is a bounded operator in Hj (R™) and

""J.LISIR
[ 44p

I @)
Hence, if € > D is small, then Banach’s contraction theorem in the Banach space
HZ(R™) can be applied. For given h, the operator A has a uniquely determined
fixed point Au = u, which is the solution of (37) we are looking for. To prove the
second part of (i) we may assume p € Mp;}~s with (9). We use the Fubini theorem
for non-negative functions with respect to the product measure pXx g on I'x R™ .

Then we have that

[ [ @it =ldyuten = [ @t -0 1@, 00 dy
R™

T jn
< clju|Hy(R™)]| |k L1 (R™)]
<00. (43)
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Here we used Proposition 3.1(i), (18), and that the norm in Hj(R"™) is translation
invariant with respect to u(-) — u(- — y). Hence,

(Ku)(z) = /k(y) u(r —y)dy exists p-ae. (44)

Re
Next we wish to prove that (Ku)(z) has p-a.e. the Lebesgue point property
(13). Let Q; with j € Ny be the cube in R™ centred at the origin and with

side-length 277 (hence Q; = Q4,0 with 0 € Z™ in the notation introduced in 2.1).
If f € L°(R™) then we put

fj(x)=|-c-;-j—| /f(a:+z)dz, j € No. (45)
Qj
For specified f we ask for which =,
Jim f9(a) = f(z). (40)

By the arguments given it will be clear that this is sufficient to prove (13). We
aply the notation (45) to Ku, introduced in (44). We have

(Ku (z) ~ (Ku)(z) = f k(y) |?2"| f (wz—y+2) - u(w—y)) dedy,  (47)
Rn Qi

and hence,

/ |(Ku) (1) ~ (Ku)(7)| md)
T

> | Y Q] j _/ u Y 4 y)ii‘(d'?’) dz dy
R» 7 Qj T
[ Ilvl ANl f AV Y A W SRR W 4 A% 4
RS | j 1FY)July = y)| + MUy —y)) pay)ay,
R~ T
< oo [ul HE®R™)| - Ik | L1 (R™)] < oo, (48)
where Mu is the Hardy-Littlewood maximal function
1
(Mu)(z) =sup 1z [ fu(w)]dy. (49)
Q

The supremum in (49) is taken with respect to all cubes Q centred at 2. To justify
the last estimate in (48) we may assume that u is the distinguished representative
according to 2.5, given by

u=(id— A)"%g with g€ Ly(R") (50)
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according to (15). The Bessel potential kernels related to (id — A)™% are positive
functions. Then it follows that

(Mu)(z) < ((id — A)"% Mg) (z), =€ R". (51)
Recall the classical Hardy-Littlewood maximal inequality
[Mg|Lp(R™)[| < cllg|Lp(R™)]l, g€ Ly(R™), (52)

in Ly,(R™) with 1 < p < 00. The last estimate in (48) is now a consequence of
(51), (52}, (8), and (43). Furthermore by (12) we have for all y € R™,

oo

lim Té]Q/ lu(y—y+2)—uly—-y)|dz=0 p-ae. (53)

Hence, using the Fubini theorem and then the Lebesgue dominated convergence
theorem with respect to pp x p, (2], pp. 37, 44, we get

Jim [ [(Kuy ) = (Ku))| ulan) = 0. (549)
T

Finally by Fatou’s lemma, (2], p. 38, we have that
[ |im ) = | wtan
T

— [ Jim (K () = (K)o w(a

I
< Jim [ |(Ku () — (K)o ds =, (55)
T
and. conseguentiv
i, tolbequciil S
. 1
Jm o [ K0+ dy = (Kua), peae (56)
x|y
Qj

After this observation the proof of part (i) can be completed as follows. By (37)
we have

uw(z) = e (Ku)(z) + h(z) pr-ae. (57)

and hence _
v (z) = ¢ (Ku)(z) + h(z), z€ R", jeN,. (58)
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Let u and h be the indicated distinguished representatives. Then we have coun-
terparts of (56) with u and h in place of Ku. Now j — co in (58) proves the
validity of (37) u-a.e.

Step 2. Let

1
1<p<o0, O<s<1+5, k€ Li(C)(R°") real, h € HE(R™), (59)

where 0 > s. We prove that (39) has a uniquely determined solution u € HS(R™).
Let ug = 0 and

wjn(z) = € / k@,9) T uy(z - g)dy+ ki), € No. (60)
Rn

Assuming by mathematical induction u; € HS(R"™) we get
g0 | H (R |

[

[TV \/ m-4
1 cH YL

r¥ro IThe

IN

O TN O
R~

and, using both the pointwise multiplier property 2.7 and the truncation property
2.8,
lluss1 | Hp (R™) |

<ce / I, ) 16 @I [l 2 (R7)| dy -+ D Bz

< CSIIk L2 (C) R Nl [HS R™) + iR [HS (R (62)

Here ¢ is independent of € and j. In particular, u;;, € H7(R™) and there is a
positive number gy such that for all positive ¢ with 0 < ¢ < &g,

1
lujea | HERM)| < 5 llug | Hp(R™) | + R | HZ(R™)]. (63)
Again by mathematical induction we obtain that
lluy | Hp (R™) ] < 2|2 | Hy (R™) ]} (64)

Hence, the sequence {u;} is uniformly bounded in ]H]?(]R" However we have no
counterpart of (42) since T" is not Lipschitz continuous in Hj(R™). We refer to
(9], section 25, for details. But T is Lipschitz continuous in ]L,,(]R“) which is
the real part of L,(R™). Hence, there is a counterpart of (42) with L,(R™) in

rrafmny

place of H;(R™). Laking the above sequence {u;} we get

uj o u if j—ooo in Ly(R"). (65)



Refined solutions of some integral equations 155

The spaces Hj(R™) have the so-called Fatou property. A description may be
found in {4], p. 15, or in (9], p. 360. In particular by (65) and (64) we obtain that
u € H;(R™) and, hence, u € H(R™). This proves that (39) has a solution in
HZ(R™). The uniqueness in Hj(R"™) follows from the uniqueness in L,(R").

Step 3 It remains to prove the improved validity of (39) in the two cases consi-

Qered. First we remark that there is a number s with 0 < 3 < 1 and a function
k EL}(R”) such that for all z ¢ m"’ all y € R™ and all » c B

Liidy 00 ald I« Ik ARy AL G & T A

lk(z, y)| < k() (66)

and -
(k(z + 2,9) — k(z,y)| < 2" k(y). (67)

This follows from k € L;(C?)(R?™). Hence,

Kotz ulat ) -keue—n
<F@) by (@2 =) —ui(m )l + PR use—9). (69

The counterpart of (44) is now denoted by

(K0 @ = [ K@ urz-y)dy. (69)
IR"

First we assume that p and s are restricted by (38). We choose in (39) the respec-
tive continuous representatives u and h, which are even Holder continuous with
respect to the exponent s, where 0 < 3r = s — ;5 < 1. In (67) we can take the
same 3. Then it follows by (68), (69),

(Ktu)(z + 2) ~ (Ktu)(z)| < c1|z|”/ﬁ(y) dy, ze€R", |z/<c (70)
Rn»

Hence also the integral in (39) is continuous. By construction, (39) is valid ur-a.e.
Since all three functions involved are continuous, it follows that (39) holds for all
z € R™. Next we assume that p and s are restricted by (40). For u and h in (39)
we choose now the distinguished representatives according to 2.5. Now we combine
the arguments from Step 1 with the above considerations. The counterpart of (47)
is given by

(K*u(z) - (K*u)(2)

=/ |-¢1-J;|- / k(@ + 2, 9) urle +2— 1) — k(@ y) us (@ — ) dedy.  (71)

~

Wi

By (68) we get the following counterpart of (48),
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[ @)= () 0] wian
T

Ty 2 [ f
< [k('“\———— lp et z2—9) -u (z, )| pldy) dz dy
= \¥J |QJ| j j | W4y g) +l\Ly Y BT Y
Rn» QJ' T
R N— T3 /‘7/ N [ 3 \ R TR
T2 k() [ sy — ) p(dr) dy
R~ T
<o / f B () (futy — 9)] + (Mu)(y = 9) pldy) dy
R» T
+¢1279% / k(y) / lu(y — y)] u(dy) dy
R» T
< caf|u[H (R™)|| - ||k | L1 (R™)]) . (72)

We have (53) with u, in place of u. Now we are in the same position as in Step 1
after (48), (53). Using the theorems by Fubini, Lebesgue and Fatou it follows that
(39) is valid p-a.e., where u and h are the distinguished representatives acording
to 2.5. [ |

3.4. Examples: d-sets. We illustrate the theorem by looking at some examples.
Againlet n € N, and let 0 < d <n. A compact set I" in R™ is called a d-set if
there is a Radon measure p in R™ and two positive numbers c¢; and c3 such that

suppp=T and c;r% < u(B(7, 7)) < cor® (73)

forall vy €', all » with 0 < 7 < 1, and all balls B(y,r) centred at v and of radius
r.If I is a d-set with the measure y, then p is equivalent to the restriction H¢|T
of the Hausdorff measure H? in R™ to I'. Further information and references
to the liteature may be found in (8], section 3, pp. 5-7. We check under which
conditions a measure pu with (73) belongs to the class M} introduced in 2.3.
Let N; with 7 € Ny be the number of cubes 2Q,., in (11) having a non-empty
intersection with I'. There are two positive numbers ¢z and c4 such that

3 < N;j279% <¢y for jeEN,. (74)
Then
oo
(h)" ~ > 20t 20it=9) < oo (75)
Jj=0

if, and only if,

d 1
t—d+g<0, hence t < — with +—==1. (76)
v v v

S|
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In the above theorem we need the class Mp;; ~%  Hence

a_ -d
p=HiC e M2™" if, and only if, E—I;— <s< g, (77)

where again 1 < p < 0c. In other words:

If p is a locally finite Radon measure in R™ such that for any compact set K in
R",

Tr =supppulK, cfr? <u(Bly,r))<ckr?, yelk, 0<r<1, (78)
is a d-set according to (73), then (37) with

d
he Hy(R"), 1<p<oo, ——<s§E (79)
D p
makes sense p-a.e.
If p = pr is the Lebesgue measure, then we have d = n and, obviously, (37)

rf.-./w....\

makes sense pp-a.e. in all spaces Hy(R™) with 1 <p<ooand 0<s< ﬂ (where
8 = 0 refers to HS(R") = Lp(R™)). There are similar assertions with respect to
(39) where one has the additional restriction s < 1+ 117 , now in the real spaces
H(R™). Hence, it is quite clear that one has a refined validity of (37) and (39) in
dependence on p and s, on some sets having Lebesgue measure zero. For example,
let 2 be a bounded C*° domain in R™. Then I' = 09 is a (n— 1)-set with respect
to the surface measure p = H"!|6Q. Hence, if

1 1
<s<? o - <8<+, SSE, (80)
p p D p

=N

then one has not only the pp-a.e. validity of (37) or (39), respectively, but also
p-a.e. validity on 9Q.
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