ON C_p^* -SEMINORMS FOR GENERALIZED INVOLUTION A. EL KINANI

Abstract: We consider algebras endowed with a generalized involution. We show that $|\cdot|_p^{\frac{1}{p}}$ is a C^* -seminorm, for every a p-seminorm $|\cdot|_p$, $0 , which satisfies the <math>C^*$ -property. Keywords: Generalized involution, involutive antimorphism, C^* -seminorm, submultiplicativity.

An involutive antimorphism on a complex algebra E is a vector involution $x \mapsto x^*$ ([1]) such that $(xy)^* = x^*y^*$ for every $x,y \in E$. A vector space involution $x \mapsto x^*$ is said to be a generalized involution if either it is an algebra involution (i.e. $(xy)^* = y^*x^*$ for every $x,y \in E$) or an involutive antimorphism. An algebra p-norm on E is a linear p-norm $\|\cdot\|_p$, $0 , satisfying <math>\|xy\|_p \leqslant \|x\|_p \|y\|_p$ for every $x,y \in E$. A complete p-normed algebra will be called p-Banach algebra. Let $\left(E,\|\cdot\|_p\right)$, 0 , be a complex <math>p-Banach algebra endowed with a generalized involution $x \mapsto x^*$. An element a of E is said to be hermitian (resp. normal) if $a = a^*$ (resp. $aa^* = a^*a$). We designate by H(E) (resp. N(E)) the set of hermitian (resp. normal) elements of E. We say that a p-Banach algebra $\left(E,\|\cdot\|_p\right)$ with a generalized involution is hermitian if the spectrum of every hermitian element is real. We denote Ptak's function on E by P_E that is, for every $a \in E$, $P_E(a) = \varrho_E(aa^*)^{\frac{1}{2}}$, where ϱ_E is the spectral radius i.e. $\varrho_E(a) = \sup\{|\lambda|: \lambda \in Spa\}$. Let $\left(E,\|\cdot\|_p\right)$, 0 , be a hermitian <math>p-Banach algebra with an algebra involution $x \mapsto x^*$. We show, as in the Banach case ([5]), that P_E is an algebra seminorm such that $\varrho_E \leqslant P_E$ and $P_E(a)^2 = P_E(aa^*)$ for every $a \in E$. Moreover $RadE = \{x \in E : P_E(x) = 0\}$.

Taking into account the fact that in any p-Banach algebra $\left(E, \|\cdot\|_p\right)$ we have $\varrho_E(a)^p = \lim_n \|a^n\|_p^{\frac{1}{n}}$ for every $a \in E$. One can prove, as in [5], the following result.

²⁰⁰⁰ Mathematics Subject Classification: 46K05, 46L05.

Proposition 1. Let $(E, \|\cdot\|_p)$, $0 , be a p-Banach algebra with a generalized involution <math>x \longmapsto x^*$. The following assertions are equivalent:

- 1) E is hermitian.
- 2) There is c > 0 such that $\varrho_E(a) \leqslant cP_E(a)$ for every $a \in N(E)$.
- 3) $\varrho_E(a) \leqslant P_E(a)$ for every $a \in E$.

Using Theorem 3.10 of [7] and the fact that the quotient of a p-Banach algebra by a primitive ideal is a primitive p-Banach algebra, we can extend Theorem 4.8 p.19 of Kaplansky ([4]) to the p-Banach case as follows.

Theorem 2. Any real semi-simple p-Banach algebra, 0 , in which every square is quasi-invertible is necessarily commutative.

Let E be a complex algebra with an algebra involution $x \mapsto x^*$. A C^* -seminorm is a seminorm $|\cdot|$ on E which satisfies the C^* -property $|a^*a| = |a|^2$ for every $a \in E$. In [6] Z. Sebestyén has proved that every C^* -seminorm is automatically submultiplicative. In this paper we extend this result to the p-seminorm case as follows.

Theorem 3. Let E be a complex algebra endowed with a generalized involution $x \mapsto x^*$. If $|\cdot|_p$ is a linear p-seminorm, 0 , on <math>E such that

$$|a^*a|_p = |a|_p^2$$
 for every $a \in E$,

then $|\cdot|_p^{\frac{1}{p}}$ is an algebra seminorm and the completion of $E/Ker |\cdot|_p$ is a C^* -algebra.

Proof. Using the elementary algebraic identity

$$4ab = (b + a^*)^*(b + a^*) + i(b + ia^*)^*(b + ia^*)$$
$$- (b - a^*)^*(b - a^*) - i(b - ia^*)^*(b - ia^*)$$

valid for every $a, b \in E$, we obtain that

$$|ab|_p \leqslant 4^{1-p} \left(|a^*|_p + |b|_p \right)^2$$
 for every $a, b \in E$.

So $|ab|_p \leqslant 4^{2-p}$ for every $a,b \in E$ with $|a^*|_p \leqslant 1$ and $|b|_p \leqslant 1$. This implies that

$$|ab|_p \leqslant 4^{2-p} |a^*|_p |b|_p$$
 for every $a, b \in E$. (1)

Hence

$$|a|_p \leqslant 4^{1-\frac{p}{2}} |a^*|_p$$
 for every $a \in E$. (2)

According to (1) and (2) we get

$$|ab|_n \leqslant 4^{3-\frac{3p}{2}} |a|_n |b|_n$$
 for every $a, b \in E$.

Consider on $E/Ker\left|\cdot\right|_p$ the *p*-norm denoted by $\left\|\cdot\right\|_p$ and defined by

$$\|\pi(x)\|_p = |x|_p$$
 for every $x \in E$,

where π is the natural quotient map of E onto $E/Ker |\cdot|_p$. Denote by \widehat{E} the completion of the p-normed algebra $\left(E/Ker |\cdot|_p, \|\cdot\|_p\right)$. The p-norm in \widehat{E} will also be designated by $\|\cdot\|_p$. Then we have

$$\|a^*a\|_p = \|a\|_p^2$$
 for every $a \in \widehat{E}$ (3)

and

$$||ab||_{p} \le 4^{3-\frac{3p}{2}} ||a||_{p} ||b||_{p} \quad \text{for every} \quad a, b \in \widehat{E}.$$
 (4)

For $a \in \widehat{E}$, put

$$\||a|\|_p = \sup\{\|ab\|_p: \|b\|_p \leqslant 1\}.$$

We get an algebra p-norm on \widehat{E} such that

$$4^{\frac{p}{2}-1} \|a\|_{p} \le \||a|\|_{p} \le 4^{3-\frac{3p}{2}} \|a\|_{p}$$
 for every $a \in \widehat{E}$.

In the p-Banach algebra $\left(\widehat{E},\||\cdot|\|_{p}\right)$ with a generalized involution $x\longmapsto x^{*}$, the spectral radius $\varrho_{\widehat{E}}$ satisfies, for every $a\in N(\widehat{E})$,

$$\varrho_{\widehat{E}}(a)^{2p} = \lim_{n} \left\| \left| a^{2^{n}} \right| \right\|_{p}^{2^{-n+1}}$$

$$= \lim_{n} \left\| a^{2^{n}} \right\|_{p}^{2^{-n+1}}$$

$$= \lim_{n} \left\| (a^{*}a)^{2^{n}} \right\|_{p}^{2^{-n}}$$

$$= \lim_{n} \left\| \left| (a^{*}a)^{2^{n}} \right| \right\|_{p}^{2^{-n}}$$

$$= \varrho_{\widehat{E}}(a^{*}a)^{p}.$$

Hence

$$\varrho_{\widehat{E}}(a) = P_{\widehat{E}}(a) \quad \text{for every} \quad a \in N(\widehat{E}), \tag{5}$$

which implies in particular

$$\varrho_{\widehat{E}}(a)^p = \lim_n \left\| \left| (a^*a)^{2^n} \right| \right\|_p^{2^{-n-1}} = \|a^*a\|_p^{\frac{1}{2}} = \|a\|_p \quad \text{for every} \quad a \in N(\widehat{E}).$$
 (6)

By Proposition 1 the algebra $(\widehat{E}, \||\cdot|\|_p)$ is hermitian and so

$$\varrho_{\widehat{E}}(a) \leqslant P_{\widehat{E}}(a) \text{ for every } a \in \widehat{E}.$$
(7)

We consider first that $x \mapsto x^*$ is an algebra involution. In this case we get by (6) and (7)

$$\|ab\|_p^2 \leqslant \|bb^*(a^*a)^2bb^*\|_p^{\frac{1}{2}}$$
 for every $a, b \in \widehat{E}$.

Inductively, we obtain for every n = 1, 2, ...

$$\|ab\|_p^2 \leqslant \|(bb^*)^{2^{n-1}}(a^*a)^{2^n}(bb^*)^{2^{n-1}}\|_p^{2^{-n}}$$
 for every $a, b \in \widehat{E}$.

It then follows from (4) and (3) that

$$\|ab\|_{p}^{2} \leqslant (4^{6-3p})^{2^{-n}} \|a\|_{p}^{2} \|b\|_{p}^{2}$$
 for every $n = 1, 2, ...$ and $a, b \in \widehat{E}$.

Letting n tend to infinity, we obtain

$$\|ab\|_p \leqslant \|a\|_p \|b\|_p$$
 for every $a, b \in \widehat{E}$.

Therefore

$$|ab|_p \leq |a|_p |b|_p$$
 for every $a, b \in E$.

On the other hand $P_{\widehat{E}}$ is an algebra seminorm such that

$$P_{\widehat{E}}(a)^2 = P_{\widehat{E}}(a^*a)$$
 for every $a \in \widehat{E}$,

and by (6)

$$\|a\|_p^2 = \varrho_{\widehat{E}}(aa^*)^p = P_{\widehat{E}}(a)^{2p}$$
 for every $a \in \widehat{E}$.

Thus

$$P_{\widehat{E}}(a) = \|a\|_p^{\frac{1}{p}}$$
 for every $a \in \widehat{E}$.

This implies that $\|\cdot\|_p^{\frac{1}{p}}$ is an algebra seminorm. Moreover $P_{\widehat{E}}$ is an algebra norm on \widehat{E} which is equivalent to $\|\cdot\|_p$, and such that $(\widehat{E},P_{\widehat{E}})$ is a C^* -algebra. Suppose now that $x\longmapsto x^*$ is an involutive antimorphism. We will show that in this case the algebra \widehat{E} is commutative. It is sufficient to consider the real p-Banach algebra $H(\widehat{E})$. By (6) we have $Rad(H(\widehat{E}))=\{0\}$. Since \widehat{E} is hermitian every square of $H(\widehat{E})$ is quasi-invertible. Hence by Theorem 2 the algebra $H(\widehat{E})$ is commutative. This completes the proof.

Let E be a complex algebra with a generalized involution $x \longmapsto x^*$. We define a C_p^* -seminorm as being a linear p-seminorm $|\cdot|_p$, 0 , on <math>E such that $|a^*a|_p = |a|_p^2$ for every $a \in E$. If $|\cdot|_p$ is a C_p^* -seminorm, $0 , then by Theorem <math>3 \cdot |\cdot|_p^{\frac{1}{p}}$ is a C^* -seminorm. Then we have the following result which is an extension of Theorem 4 of |6|.

Corollary 4. Let E be a complex algebra with a generalized involution $x \mapsto x^*$, I a *-ideal in E and $|\cdot|_p$ a C_p^* -seminorm on E. The following assertions are equivalent:

- 1) There exists a C^* -seminorm $|\cdot|$ on E such that $|x|=|x|_p^{\frac{1}{p}}$ for every $x\in I$.
 - 2) For every $a \in E$

$$\sup\{|ab|_p^{\frac{1}{p}}\,,\quad b\in I,\quad |b|_p\leqslant 1\}<+\infty.$$

Remark 5. If $|\cdot|_p$ is linear p-seminorm, $0 , such that <math>c |x^*|_p |x|_p \leqslant |x^*x|_p$ for every $x \in E$ and some constant c > 0, then $|\cdot|_p$ is not necessarily submultiplicative as the following example shows:

Let E = C([0, 1]) be the algebra of all complex-valued continuous functions on [0, 1] endowed with the norm

$$||f||_1 = \int_0^1 |f(t)| dt$$

and the involution $f \longmapsto f^* = \overline{f}$. It is clear that $||f||_1 = ||f^*||_1$ and $||f||_1^2 \le ||f^*f||_1$ for every $f \in E$. But $||\cdot||_1$ is not submultiplicative. Actually $||\cdot||_1$ is a linear norm for which the product is not continuous.

Remark 6. Let $|\cdot|_p$ be a linear p-seminorm, $0 such that <math>|x^*x|_p \le c |x|_p |x^*|_p$ for every $x \in E$ and some constant c > 0. The same argument used in the proof of Theorem 3 shows that $|x|_p^{'} = \max\left(|x|_p, |x^*|_p\right)$ is a linear p-seminorm, $0 , for which the product is continuous. It is not the case for <math>|\cdot|_p$ as the following example shows:

Let E denote the direct sum $C([0,1]) \oplus C([0,1])$. Define norm, product and involution in E by:

$$egin{aligned} \|(f,g)\| &= \max \left(\|f\|_{\infty} \, , \|g\|_{1}
ight); \ (f_{1},g_{1})(f_{2},g_{2}) &= (f_{1}f_{2},g_{1}g_{2}), \ (f,g)^{*} &= (\overline{g},\overline{f}), \end{aligned}$$

where

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$$

and

$$||g||_1 = \int_0^1 |g(t)| dt.$$

It is easy to verify that $||(f,g)^*(f,g)|| \le ||(f,g)|| ||(f,g)^*||$ for every $f,g \in C([0,1])$. But the product is not continuous for $||\cdot||$.

References

- [1] F.F. Bonsall and J.Duncan, Complete normed algebras, Ergebnisse der Mathematik, Band 80, Springer Verlag, 1973.
- [2] A. El Kinani, A. Ifzarne, M. Oudadess, p-Banach algebras with generalized involution and C*-algebra structure, Turk. J. Math. 23 (2001), 275-282.
- [3] A. El Kinani, M. Oudadess, Involution généralisée et structure de C*-algèbre, Rev. Academia de Ciencias, Zaragoza, 52 (1997), 15-16.
- [4] I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
- [5] V. Ptàk, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.
- [6] Z. Sebestyén, Every C*-seminorm is automatically submultiplicative, Periodica Mathematica Hungarica, 10 (1), (1979), 1-8.
- [7] W. Żelazko, Selected topics in topological algebras, Lecture Notes, Serie 31 (1971).

Address: Ecole Normale Supérieure, B.P. 5118, Takaddoum, 10105 Rabat (Morocco).

E-mail: a_elkinani@ens-rabat.ac.ma Received: 13 November 2001