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ON THE MOMENTS OF HECKE SERIES

AT CENTRAL POINTS I1
ALEKSANDAR Ivi¢ & MATTI JUTILA

Abstract: We prove, in standard notation from spectral theory, the asymptotic formula ( B > Q)
T 2
> b= (3) - BTisT+0T(og D)),
T
23 <T
by using an approximate functional equation for Hj(%) and the Bruggeman-Kuznetsov trace

formula. We indicate how the error term may be 1mproved to O(T(log T)").
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1. Introduction and statement of results

The purpose of this paper is to continue the work begun by the first author in [6].
Therein he obtained asymptotic formulas for sums of H3( 2) and H}*( 1), where
H,(s) is the Hecke series (s = ¢ + it will denote a complex variable)

H;(s) = th(n)n_“’ (o > 1), (1.1)

associated with the Maass wave form 1;(z), where p;(1)t;(r) = p;(n) and p;(n)
is the n-th Fourier coefficient of 3;(z). The fun ctlon H;(s) can be continued to
an entire function. It satisfies the functional

(1.2)

where ¢; (= 1) is the so-called parity sign of ¥;(z). By {A; = f;? + 1} u {0}
we denote the eigenvalues (discrete spectrum) of the hyperbolic Laplacian

a\? /8 2)
__.2{(C o
A=-y ((8:1:) +(3y)
\\ d A Y td /
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acting over the Hilbert space composed of all I'-automorphic functions which are
square integrable with respect to the hyperbolic measure (I' = PSL(2,Z)). For
other relevant notation involving spectral theory the reader is referred to [5], [6]
or Y. Motohashi’s comprehensive monograph [12]. The method used in [6] could
not furnish the asymptotic formula for sums of H,( %), but only the bounds

T*logT)™"* < Y o H;(}) < T?(logT)"/? (1.3)

Kk; <T
were obtained, where as usual we set

tj ~ |ps (1)P(cosh mr;) .
The aim of this paper is to improve (1.3) to a sharp asymptotic formula,
given by

-rr

Theorem 1. We have

T 1
NT o H; (L) +z[ MJ:/I\ + O(T(log T)V/?). (1.4)
L ST TR fy ar2R ¢ \n)
" <

It remains yet to evaluate the weighted integral of the mean square of |(( —12- +
it)| in (1.4). The evaluation of this integral is given by

Tlﬂanram 2 Thcrc ovict ranctanta A~ MW and R which are offertivealyr pamma
M RACUSNIL O . LALOLU LULIOLOaGlILILY ﬂ\/ U} ULV v wWiliir ai o IIULD,IVCIJ Luir
putable such that
TG+
2 dt = T(Al T te
= ogT + B) + O (T37%). 1.5
0

Corollary. If A is the constant appearing in (1.5), then

z a; H;(3) k )

Kj ST

). (1.6)

In (1.5) and later € denotes positive, arbitrarily small constants, not nec-
essarily the same ones at each occurrence. The formula (1.6) shows that there

are actuallv two main terms in the asymntotic formula for the sum of o H. /1y
L v V) \.‘l..lLL ¥v is inailmiax W2 ARKJ LAd WVELN, MJ lut’uvul\l AVSL LILI\AL A U ) VELAN, D 4lil UL uJ .L‘J \ 1),

Although the error term in (1.6) is probably too large by a factor of v/logT, the
method of proof of Theorem 1 does not allow any further improvement, if we use
the weight function (2.14). However, by a suitable choice of the weight function
the error terms in (1.4), (1.6) (and (1.7)) may be improved to O(T'(logT)¢). We
preferred to work directly with the Gaussian weight function (2.14) because of its
classical flavour. This already leads to (1.6) with two main terms, which is the
novelty of the paper.
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It may be remarked that, with our method of proof, we can obtain the
asymptotic formula

-

2
Y oj= (7;) + O(T(log T)/?). (1.7)

e &)

K <1T

This should be compared to a result of N.V. Kuznetsov (see [12, p. 92] with
m = 1), who had (1.7) with the error term O(1'log7’), so that our result is
somewhat sharper.

In what concerns the true order of sums of aij(%), it was conjectured in
[6] that, for k € N fixed,

— T)e(L
> oHS(2) Wj | \(i dt_T Pyrz—iy(10g T) + Oc h(TH475), (1.8)

K.J‘ST

where P12 1)(z) is a suilable polynomial of degree 2(k* — k) in z whose coef-
ficients (fepend on k, and 0 < ¢x < 1. We actually have ¢; = ¢y = 0, and even
bnarpa results in these cases U_y \1 U) and Y. Motohashi’s resu 1 [1 ] respectiveiy

Namely he proved the asymptotic formula (v = 0.5772157. .. is Euler’s constant)

z ajH}“’(%) =27 *T%(log T + 7 — 3 —log(2m)) + O(T1og" T),
Kk, <T

while the proofs in [6], in the cases & = 3,4, show that (1.8) holds with ¢3 =
1/7,¢4 = 1/3. We also note that the main term in Theorem 1, namely (T/7r)2
exactly of the form predicted by Random matrix theory (see J.B. Conrey [1] and
the work by J.B. Conrey et al. [2]). This theory also gives the correct value of the
leading coeflicient of the polynomial Py 2. 4y(z) for the cases k = 2,3,4, when
the asymptotic formulas for the sums in question are known.

Our method of proof consists of using the Bruggeman-Kuznetsov trace for-
mula (cf. Lemma 1), coupled with a simple approximate functional equation for
H;(3) (of length x £2) for Theorem 1 (cf. Lemma 2). This is proved in Section
2, which contains the necessary lemmas. The crucial lemma is Lemma 3, which

shows that, in our case, the contributien of the Kloosterman sum part in thc trace

formula is neghglble. Theorem 1 is proved in Section 3, and Theorem 2 in Section
4. Iinally in Section 5 we discuss how the error terms in (1.4), (1.6) and (1.7)
may be improved to O(T'(log T)*).

2. The necessary lemmas

Lemma 1. (The first Bruggeman-Kuznetsov trace formula). Let f(r) be an even,
regular function for |Smr| < 3 such that f(r) < (1+ |r])>7% for some § > 0.
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Then
=, 1 Ooir(M)o2ir(n) | .
a;t;(m)t;(n) f(k;) + = = f(r)dr
Jé; 3(m)i;(n)f(k;) j o (mn)TIC( + 2ir)2 (r) o
LIPS i Lo o (dmymn) '
=2 nl,n./_ r tanh(mr) f(r) r+L (m, n; )f+k 7 ):

where 8y m = 1 if m = n and zero otherwise (m,n > 0), a,(d) = Ed{ﬂ d*,
S(m, n; £) is the Kloosterman sum and

n@=2 " @it (22)

T J_oo cosh(nr)

The J-Bessel function is defined (see ¢.g., N.N. Lebedev [9]) as

z/2)v 3k
BRI = I (S L

'The proof of Lemma 1 is to be found e.g., in Y. Motohashi {12, Chapter 2].

Lemma 2. Let k; = (1 +o(1)K, r = (1+o(1))K (r€R)as K — o0,Y =

2
(1+6)E5, with § > 0 a given constant. Then, for any fixed positive constant
F O =0CMA NS0 oh that faor h (o IC

A > ﬂ fhere av StS

Lagre exi a constant = L\A,0) >V sucia l..uar.. or i = L 1ogin, we
have
Hi(H) = Y ti(n)n % —(/" L O(K 4, (2.4)
n<(144)Y
and

¢ +in)(3 —ir) = Z o“gir(n)n_%_i’"c"("/y)h + O(K 1), (2.5)
n<(1+86)Y

Proof. We start from the Mellin inversion integral (see e.g., |4, (A.7)])

h 1 Y\" w, dw
—(n/YY 3r =y =
e 2m_/(ﬂ)(ﬂ) (1+h) ” (c>0,Y>1), (2.6)
where © denotes integration over the line Rew = c¢. We use (1.1) and (see |4
M haomtan 11)
wilapucl l]}
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to obtain from (2.6)

PN " ran

S 4 (m=V2e- Y _ L[ w, ¥*
Zt,(n)n e =5 (1)H3(2+w)I‘(1+ -) —dw  (28)

and

> i (myn e/
n=1 (2.9)

w

w Y
= '-2—72‘.( ((w+ 2 +ZT)C('LU+ = —zr)F(1+ E)—w—dw,

We shall give only the detailed proof of the more complicated formula (2.4). The
proof of (2.5) is analogous, being based on the use of (2.9). The series in (2.8) can
be truncated at n = (1 + 8)Y with the error <« K~4. On the right-hand side
of (2.8) we replace the line of integration by £ = y1 U~y U y3 Uy U s, where
M is the line from —1 —ioo to —1 —ih?, 7, is the line segment from —1 — ih?
to —1h —ih?, 43 is the line segment from —3h —ih® to —3h + ih?, 44 is the
line segment ﬁ'om —2h +ih? to —1 + ik?, and vs is the lme from —1 + ih? to
L. L meoe a1 N ghich by tha racidiie thonram

—1 —1'- LW lll uuulg tnis we pass tie pULC W =v wu'u.u 1y the T&€81ayc uiieor €111,

gives us the desired contribution H,(3). By the functional equation (1.2) we have

4 S RN S " 3 BT o S 0% R | /9 10\
Hy(5 +wW) = A (3 + W)l ~ W) (2.10)
with 1 2 i/l 1
Y . (1 Y = (D \eW X — e R YT P T
Ajlg T W) ={4m) (3 —w+is)l(5 —w— ix;) (2.11)
% (g5 cosh(mk;) + sin(mw)).
s hound the samma factors on £ we use Stirlineg’s formula in the form
I'o bound the gamma factors on L we use Stirling’s formula 1n the form
. 1 _
(o +it) < [t72e7 ™2 (|t] > t0), (2.12)

which is valid uniformly for 0 < o < [t|?/3. To see this, note that

= Re foa%dm)

< Lolog( + %) + O(ot?) < alogt] + O((o + o®)t3),

hence (2.12) follows from Stirling’s formula for I'(it), and can be used to bound
the gamma-factors appearing in the expression for X;(3 +w).

We have first

(1 w ¥Y®  exp (=TI (K? 4 02 -A
[nH](erw)F(lJrh) " dw<<-/h exp( Qh)(K +v)dv K K™%,

2
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if C in the formulation of the lemma is sufficiently large, and an analogous bound
holds for the integral over s .

Next, on vz and on <y, the integrand is

Finally, on ~3, the integrand is

(1 + o(1)) K2

h/2
15\—h/2 —A
10y ) < (1+ 56) <K

< K?(4W2Y)“h/2 < (
\
for any fixed A > 0. Combining the above bounds we obtain (2.4). [ ]

Lemma 3. For Cy/log K < G < K and a sufficiently large constant C > 0 we

have

> oHi(3) < GK. (2.13)
K<r; <K+G

Proof. First we remark that the slightly weaker bound CK+/log K for the sum in
(2.13) follows by applying the Cauchy-Schwarz inequality and the bound for sums

of a; and o; H 2(%) in short intervals; such bounds are given by Y. Motohashi [12,
pp. 121122 and (3.513)]

B L e Y I

Secondly, in the proof of Lemma 3 we may restrict G to G = Gy = C/log K.
For larger G we divide [K, K + G] into <« G/Gyp subintervals of length Gy, to
each of which we apply (2.13) with suitable K and G = Go. Adding up all the
results we arrive at (2.13).

The idea of proof of (2.13) is actually the same as the one that will be used in

the proof of Theorem 1, and for the proof of Theorem 1 we need (2.13) only with
G =Clog Ky, Ko < K <2Ky. Lemma 3 is in fact a local version of Theorem 1.

Thus let, for G = Cylog K,
( +l) [y /T_IL_‘{\Q\N

This function, which is a Gaussian weight function and a slightly modified function
of the function used systematically by Y. Motohashi [11], [12], clearly satisfies the
conditions of Lemma 1. To begin the proof, we apply Lemma 1 (taking n = 1),
combined with Lemma 2, where § > 0 is a small constant. This yields, since
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H;(3) > 0 (see S. Katok-P. Sarnak [8] for a proof),

Yo o H(3) <2) oyHi(5)f (K, K)

K<hi<K+G =1

=2 7 tanh(an) (. 2 [ KG+inl®
<5 [ rewense i [T
+2 Z m—12e—(m/Y)" Z S(m,1;0)f, (47’”\/5) + o(1)

m<(1+6)2K2/(4x2)

g;r—g— /_oo rtanh(7r) f(r, K)dr

f(r,K)dr

+2 Z m—llze—<m/¥>“z S(m,1;6)f, (4"\/‘) + o(1),

m<(14+6)2K 2/ (4m2) e=1
(2.15)
where f, is given by (2.2) with f(r) = f(r, K).
We have first
o0 K+Glog’ K 2n
/ rtanh(mr) f(r, K)dr < K [ e EY/C gy 11 GK. (2.16)
J—eo ) JK-Glog? K
The crucial step in the proof is to show that, for any fixed A4 > 0,
| 4
T 73 01, (.{_’\/a) < K4, (2.17)

t wo ochonce (1S (.o K (

a
1at We CoosSE &= 2~ O Vg £

To begin with, we may truncate the f-sum in (2.17) to therange 1 < £ < KB
for some constant B > 1. To see this, we move the line of integration in the integral
defining f, (cf. (2.2)) to Smr = —1. Since f(—%i,K) = 0, there is no pole of
the integrand. Then we use the series representation (see (2.3))

B (——-1)k(2/2)2+iz+2k
J2+z'a:(z) = ’; I'(k+ 1)[‘(k + 2+ iz + 1)

(z = Amy/mft < K17B),

which shows that the contribution of £ > K2 is <« K~4 for any fixed A > 0,

nramided that B — R{ AY e enfReiently larca

PLUVIUC\J uviiav I — L}\-‘ l} A0 D ULLLVANARIVLY  ACNR -

In the remaining sum, we substitute (see e.g., [9, p. 139])

€y

z OO0
Jair (€) — J_2ir(z) = ;z sinh(wr)f cos(x cosh u) cos(2ru) du.
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Integration by parts shows that, for >0 and r > 0,

2 flos” K d
Jair (€) = J_2ir (€) = — sinh(7r) j_ tog? KCOS(:”COShu) cos(2ru) du (2.18)

+O (27! (r + 1) exp(rr — L10g® K)) .

The error term in (2.18) clearly contributes << K~4 to the sum in (2.17). The
main term in (2.18) will contribute to f,

4 log? K [>5}
—-— cos(z cosh u) / rf(r, K) tanh(7r) cos(2ru) dr du. (2.19)
T J-log? K Jo )

In the inner integral we use

rtanh(nr) = rsignr + O(|r|exp(—|r|)), (2.20)

1-

i"d inaKe tine

! change of variable r = K + Gz. The x integral can be truncated at
|z} = log® K with error <« K ~#. The rational function in z in the integrand is
expanded by Taylor’s series, taking so many terms that the error will again make

a contribution which will be <« K~4. Then (2.19) will become

a

log? K .
= Re [ P(u, K, G) cos(z cosh u) exp(~(G*u? + 2iKu)) du + O(K ~4),
j { ) cos{

e (2.21)
where P{u, K,G) is a polynomial in u,K and G. Here we used the familiar
integral

Fide o] 9 I? /Ag\
exp(Azr — Bz®) dz = |/ —exp (—) (Re B > 0), (2.22)
./_oo B 1B

and P(u, K,G) may be evaluated by successive differentiation of (2.22) as the
function of A.

If G > Cylog K with large C > 0, then the integration in (2.21) can be
restricted to the interval |u| < ug, where ug is a small positive constant, and the
error thus made will be < K ~4. Then the relevant exponential factor will be of
the form

exp(ig(u)), g(u) = £xcoshu + 2Ku, ¢'(u) = tzsinhu+ 2K > K

for |z| < BK and any constant B > 0, and |uf < 4o with sufficiently small ug,
since sinhu = u + O(|uf?) for small u. In our case & = dm/m/f < 2(1 + 0K
by (2.4). Thus the corresponding integral will have no saddie points, and by a
large number of successive integrations by parts it transpires that the integral in
question will be < K~#, and so will also be f (4m/m/€). Therefore (2.17) holds,

and Lemma 3 follows from (2.15)-(2.17). ]
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Lemma 4. If A(s) = ). <y a(m)m™* with a(m) <. m*, then we have

T
f IC(3 +it)2|A(S +it)P dt
0

h)a(k T(h, k A (2.23)
-7} o ’“( athalk) . 1y (1 ( ( )+27—1)+E(T,A),
fM <

hk<M

< T for some C > 0.

3. The proof of Theorem 1

As in the proof of Lemma 2, we let f(r, K) be defined by (2.14). We suppose
additionally that Ky < K < 2K, and that G = G(Kp) is a function of Ky (later
we shall choose G = Cy/log Kg). We apply Lemma 1 and Lemma 2, similarly as

in {218 Then we divide l'“r /_f‘ and intecrate the resulting expression over K

Ll \&.iU ). L1011 WO Uivius iy u LRUL LT ISl uaidny A pra eSSl

from Ko to 2Kp. It follows that

R
ZaJH( ote) + 2 [~ I war

== /w rtanh(nr)w(r) dr + o(1)

1 r2Kn 0 g /A N\
t 7 > m—1/2e—(m/Y) ZES(m,l;l.’) f+ (‘*7\/% dK,
Ko jm<(146)2K2/(an?) =1 \
(3.1)
where we set,
1 /~2K0
VTG J g,

Since w(r) is even, it suffices to consider r > 0. From (2.14) we obtain, with the

T7

change of variable K =r + Gz,
1 [(Ko—r)/G

\/_ j(K[) r)/G

2
L —:c U —2
w(v) dz + O(n”u

—~—
_DD
]

~—

4o

A 17 N 17 1
Ifre [ng + CG+/log Ky, AI\(] — CG+/log K¢ with large C > 0, then the integral

in (3.3) equals 1 + O(Ky2). If r > 2K, + CGy/log Ko or 1 < K(] — CGlog Ky,
the integral is O(K, %). Otherwise note that, for > 0, we have 2e® > 2+2z+ 72,
which implies that

e < 2x+1)72 (z > 0). (3.4)
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Hence using (3.2)-(3.4) we obtain (xz(z) is the characteristic function of the set
Z),forr >0,

w(r) = Xixo,2100 () + O(K5 %) + O{ G¥(G + min(lr — Ko, Ir — 2Ko])) *}. (3.5)
Using (3.5) and Lemma 2 we have, for C > 0 sufficiently large,
éo‘ = 71y . N T o2 1y s N —~ N
2 aiHi(5)wik;) = Py o Hj(z)wik;) + OL)
i=1 Ko—CG+/log Ko<x;<2Ko+CG+/log Ko

=Y aHE+o

Ko<r;<2Kg
/ \

+0|G® > o H;(G + Ko — n,-)sJ (3.6)
\‘ Ko—CGy/log Ko<x; <Ko

(

+0|G® 3y o Hj(G + K — 21{0)—3\
\  2Ko<r;<2Ko+CG/log Ko }

= Y aiHi(3)+ O(GKy).
Ko<r;i<2Kp

Similarly we obtain, since w(r) = w(—r),

L= KG+in)lP 2 /2K° K4 +in)P
7)o [0+ 20 - [ R Agu(r)dr+O(GKo), (37)
' v Ko (RS H

on using 1/¢(1 + it) <« logt and ¢(3 + it) < t}/¢. Finally we have, since (2.20)
hoids,

1 oo 2 2Kg
rtanh(nr)w(r)dr = rdr + O(KG)

3
oo ™ JKqy (3.8

1 .
== {(2K,)? — K3} + O(GKo).

)
" J- \
J

We note that the contribution of the Kloosterman-sum part in (3.1), analogously
to (2.17), is <« Ky for any fixed A > 0. Therefore from (3.1) and (3.6)-(3.8) it

follows that - | (1 )IZ
2 o I¢(5 +ir
(L z Hr -
2. esHi3)+ w/ cL+znp

Ko<r;<2Kyp Ko (39)
1 2
= — {(2K0)* ~ K3} + O(GKo).

ma ER i & | r fn N\ *r 1 P —~ A Tr 11 o i1
Theorem 1 follows now from (3.9) if we choose G = Cy/log K¢ with a sufficiently
large constant C > 0, replace K¢ by T27? and then sum over j = 1,2,... . The
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asymptotic formula (1.7) follows similarly as the proof of Theorem 1, if one uses
the technique of proof of Theorem 2. One simply takes m = n = 1 in Lemma
1 and proceeds as in the proof of Theorem 1, only the argument is simpler and
the details are thus omitted. Namely the integral in (1.4) will appear without
[¢(5 + it)|*, and will be asymptotic to CT.

In the general problem of evaluating ,<r oyl ( ) one encounters the integrals
(see (1.8))

I(T) = [Tw?i;dt (k € N) (4.1)
ST ) k2R ’ |

where k is fixed. By general convexity results for Dirichlet series one has (see K.
Ramachandra [13])

TEETTTTE LT S

k2
L.(T) > T(log T)" . (4.2)
Although one expects the lower bound in {4.2) to be of the correct order of mag-

nitude this, like in the case of the integral without the zeta-factor in the denom-
Inator, seems at present 1mp0331b1e to prove for k > 3. In fact, even for k = 2,
when precise results on jo I¢( + it)|*dt are known (see e.g., [5] and [12]), an
upper bound for I3(T} corresponding to the lower bound in (4.2) seems diffi-
cult to obtain and represents an open problem. A slightly weaker bound, namely
I,(T) <« T(log T)*(loglog T)?, follows from [14, eqs. (3.34)-(3.36)] by a method
similar to the one used in the proof of Theorem 2.

What we can obtain, though, is the asymptotic formuia (1.5} of Theorem 2,
which will be proved now. We remark that the exponent of the error term is by no
means best possible, and the use of optimal known zero-density estimates would
certainly lead to small improvements.

We start from

_ (TGP ,
A1) ._/;‘ 1¢(1 + 2it)| dt = [A(T) -/B(T) (43)

Here A(T) is the subset of points t € [T, 2T] such that there are no zeros p =
B+ iv of ((s) satisfying 2 < B <1,2t —log"T <~ <2t +logT, and B(T) =
[T, 27|\ A(T). From M.N. Huxley’s zero-density estimate (see [4, Chapter 11])

(3—3a) /(33—
AN 4 AN

i

C

jame]

1 m
Dog® 1

—_—
vV
L]
IA
q
1A
—i
p ——

it follows that
w(B(T)) < T3%10g® T, (4.4)

S |
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where p(-) denotes measure. Thus, by the Cauchy-Schwarz inequality for integrals,

L 2 rm \ y1/2

i j ), Cdt- (B )]

4!

r

~1
j ez +i)l°
B(T)l ¢(1+ zt)|2

I/\

I..... m
10g 1,

where C denotes generic positive constants, and where the integral with the fourth
moment nf jf{ 2 28) was actimatad "T‘I"IQ]I‘Y na 227 Tlnn‘s’r‘ neing 1 /71 1 954\

AN O AT COVLLIGUAL VliVially do S 4 Vg 4, Uolllpg L/ (LT 4% <X
logt. If t € A(T) then 1/{(o+2it+iv) <. t° foro > 3/4 and |v] < 1log T (e £,
by the technique of (15, Chapter 14]). Hence from (2.6) we obtain (h = log? T,
T <Y «TV?)

, dw

n-1-2itg-(m/yyr _ 1 f Yy e

sl an ) —_— 1
PV omi | C(1+2it+w) *
. (1)

1 [ ye
2mi j C(1 + 2t + w)
Rew:l,[&hnw]ﬁ%hz
1 1 yv w. dw
—_— Ly I'(1
COL+2i) | 2mi / Axoitiw) )

;:_I g

w

. w. dw o an. L
r(l+ —)— +O(T™° .
1+ + o) (45)

+ O(T™1%)

1
T vz
Set a(m) = p(n) if m = n? and a(m) = 0 otherwise. From (4.5) it follows that,
for t € A(T),

1

YO > a(m)m T exp(—(Vm/Y Y + O(TEY V4. (4.6)

m<4Y?
We then obtain, using (4.4), (4.6) and the Cauchy-Schwarz inequality,

~ 2T

= Lyin)? alm)m Y2~ exn( — (/Y 2
jA(T)Mdt ./T <G+ t)ll Z (m) p(—(vm/Y)")| dt

m<4Y?
+ O (THeY /%) L O(T*/510g® T).

To evaluate the last integral we use (2.23) of Lemma 4. We obtain

T
| G +or] T atmm 1 exp(—(vimy )| e

m(AV2

_ BEOEK) /vy —k/vyn 2 T(¢,k)?
=T >, “ape I k) (log g s 12y -1
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Setting d = (¢, k), = df,, k = dk;,(£1, k1) = 1, we see that the double sum above

equals
27 PR PRV
K-{d) plka )p(£)
Z 22 Z e
d<2y ki S 6 < ZE (ka0 )=(k1,d)=(¢1,d)==1 ™

e /Y@ /Y floa (T N g0 1
xe {Og (2nkﬂe§d’~’ Rt

The terms k; > Y/(2d), and then ¢; > Y/(2d) are estimated trivially, producing
an error which is O(TY ! log T). In the remaining terms we get rid of the
exponential factor by using e™* = 1+O(z) for 2 > 0. In the inner sum we extend
the summation to all k;, £;, obtaining again an error which is Q(T'Y ! log? T,
and similarly we extend the summation over all d. Finally we obtain that the
double sum above equals

LRl 2100 SOVDE O ATV

log”> T
B+ - (A >0),
AlogT + B + O( Yy ) (A4 >0),

where the constants A and B may be explicitly evaluated. Putting together all
the expressions we wind up with

[T 1¢(5 + )2

+ OE(T1/3+EYs/3) + Oe (Tl-lra}r—l/fl) + 0(714/5 lOgC’ T)

The choice ¥ = T%/3% completes the proof of (1.5) of Theorem 2.

5. The choice of the weight function

We shall discuss now how the error terms in (1.4) (and thus also in (1.6) and
(1.7)) can be improved to O(T(log T)?). Let SZ he the class of smooth functions
f(z) (€ C*) introduced by LM. Gel’fand and G.E. Shilov [3]. The functions f(z)
satisfy for any real z the inequalities

k . k ko . _ |
2% f O (2)] < CA*BUF**q®  (k,q=0,1,2,..) (5.1)
with suitable constants A, B, C > 0 depending on f alone. For « = 0 it follows

that f(zx) is of bounded support, namely it vanishes for |z] > A. For a > 0 the
condition (5.1) is equivalent (see [3]) to the condition

If@(z)| < CB%? exp{—a|z|'/*) (a = af(cAV®)) (5.2)

for all £ and ¢ > 0. We shall denote by EZ the subclass of S8 with o > 0
consisting of even functions f(z) such that f(x) is no: the zero-function. It is
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shown in [3] that S? is non-empty if 3 > 0 and a+ 3 > 1. If these conditions hold
then E? is also non-empty, since f(—x) € 52 if f(z) € S2, and f(z)+ f(—=z) is

alkrare aun TF
a.lwa_ya €VEr. 11

f(z) = /_O:Of(u)ei““c du

denotes the Fourier transform of f{z), then a fundamental property of the class

58 (see op. cit.) is that S8 - Sg, where in general U= {f(a:) : flz) e U}.
Henceforth let ¢(x) € E?_; be non-negative, where ¢ > 0 is a small constant,

and set
>+ + K ~K
o) = 1t ) = i Lo (CE) 1o ()] 69)

CllogK) <G<VK, (C=C(6)>0). (5.4)

where

The function ¢(z) is of fast decay by (5.2), and moreover by the general theory (op.

cit.) the analytic continuation of ¢(z) certainly exists in the strip |y| = [Smz| <
C (C > O)’ whara it ia nf rantd docav cn that f l:r-\ aaticfies the nqsnrnnhn‘ne of

FYLIVIL U W) UL LApiIU Jutiay, ov uxlu.u FR7ARY DCUULTILIINADS ULAT GOl UILALAS S

Lemma 1.

Our main task is to show that (2.17) holds with f; (cf. (2.2)) relating to
fo(r), as given by (5.3), and G satisfying (5.4), where of course it is the lower
bound that is critical. We follow the reasoning given from (2.18)—(2.22) in the proof
of Lemma 3, but make the following observations. The reason G = C+v/log K was

the limit in Lemma 3 (and indirectly in the proof of Theorem 1) is the appearance
of exp(—(G?u® + 2iKu)) in (2.21). With f,(r) replacing f (cf. (2.14)), the

= 0 L - 1 2 1
inte ral over 7 in (2. 18\ can be truncated at I: = log“ K ‘V\'Ltll 1'1'6"11"1-.:10 CITOr.
/ il 5 B

While the term 2:Ku in (2.21) (which comes after the change of variable r =
K + Gz) cannot be avoided, the term —G?u? comes from the fact that essentially

e (e Si ;g ) is the Fourier transform of itself, which is embodied in the formula
(2.22). This factor sets the lower bound G = Cv/log K. However, in this new

aifiiatian wea ahall ahtain  in tDOA of nvp(__quz) the ‘an‘r_:t on 1’;\.('1'\ c Q1_6

aluvuauivia W Loollall VLol uls

which by (5.2) satisfies

Thus we may truncate the integration in the analogue of (2.21) now at |u| < ug,
provided that G > C(log K)?,C = C(8) > 0 sufficiently large, and the analogue
of (2.17) will hold again.

It onlv remain

Avu Siany

eclk . 10 e )
Theorem 1 will go through. To do hlS, instead of (3.2) consider

gn
0
[l
o]
"y
:r‘
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where B = $(0) = [*_¢(z)dz. Since ¢(z) € E{_s, we have
ol2) < exp(—ale D) (a>0)

Therefore by using e.g., the inequality
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