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ON SOME CONNECTIONS BETWEEN ZETA-ZEROS

MNADOQ MNTY AN TAT I T AT
AND SQUARE-FREE DIVISORS OF AN INTEGER

KAZIMIERZ WIERTELAK*

Abstract: A relationship between square-free divisors of an integer and zeros of the Riemann
zeta-function, which is more explicit than the classical formula, is presented and discussed.
Keywords: distribution of special numbers, explicit formulae.

1. Introduction and statement of results

Let 0(n) denote the number of square-free divisors of n. Moreover, let s{z) and
S(z) be functions holomorphic of the upper half-plane defined by (1.1) and (1.2)

below. In this note the analvtic character of them is considered. In particu
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we show that they admit analytic continuation to multivalued functions on C.
Moreover, s(z) satisfies certain functional equation (cf. Theorem 2 below).
In the case of simple zeros of the Riemann zeta-function, s(z) and S(z) are
defined as follows: .
v C(f)e?

af2Y — lim . -
NEp = a2l
noco £ 2¢'(p)
0<Fp< T

and ) .
£) ez
S(z)= lim Y ¢ lp)e? (2,) ,

nooo L p¢' (p)

where the summation is over non-trivial zeros p of ((s), and a suitably chosen
sequence 17, yields an appropriate grouping of the zeros.

Similar investigations were performed by J. Kaczorowski [5] in connection
with the distribution of primes in arithmetic progressions, and by K. Bartz [2]
in connection with the Mobius ;:-function. In our case singularities of s(2) and

S(z) are more complicated when compared with singularities of the correspondmg
functions considered in [5] and {2].
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As an application of our results we give a new proof of the classical explicit
formula for 3> ___8(n).

In the p‘pnpral case, if /‘(q\

=118l Al Laog,

term in s(z) and S(z) must be replaced by the appropriate residue. Let k, denote
the multiplicity of a nontrivial zero p. Then the general definitions of s(z) and

u\Z) read as follows:

le zero at s = p, the corresponding
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1 dkp—l [ egszg2 (g).l
a2y =\ \ B (e Aka 2 71 11
N =2 2 — M ek, 1 | TP < 1)
ﬂ=0Tn<gp<Tn+1 2(kp 1) ds [ I- C(s) _
(oo}
=2 snl2)
n=0
o - 1 dke=1 [(s— p)kochezc2 (%)]
Szy=), > — T l J (1.2)
s S (k, — 1)! dsk» sC{s) o

]8

= 2 Sa(2),

where Sz > 0,75 = 14, and 2" 'K, < T, < 2"K, (n 2 1, Ko being an absolute
positive constant) denotes a suitable sequence of numbers (for the precise definition
of T} s see Section 2). It is easy to see that s(z) and S(z) are holomorphic for
S% > 0 (see Lemma 3).

Our principal aim is to describe analytic character of these functions. To
this end let us intreduce the following notation. For any two real numbers a and b
we denote by I(a,b) a simple and smooth curve 7 : [0,1] — C such that 7(0) = a,
T(1) =b and 0 < Q7(t) <1 for ¢t € (0,1). Moreover,

j f(2)d=
{(a,b)

for a meromorphic function f means that f is regular on the curve I(a,b) and
also regular in the open domain bounded by (e, b) and the interval la, b]. Similar
convention applies to integrals of type

For z € C we write

~ ) .
h(z) = ] - (13)

T . C (S) zs
Rh(z) = / 5 (9 ds. (1.4)

Of course h and | are entire functions of z.
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Theorem 1. The function s(z) is holomorphic on the upper half-plane H = {z €
C:Sz >0} and for 0 < Sz < m we have

Imis(z) =§e—% i ‘:g’/‘g (1 - )_% - (1.5)

_e%zz’a 9(")‘ n)+H(z)+h(z),

where H(z) is holomorphic for |Sz| < m, h(z) is defined by (1.3), a(m) =
Lizpm In(l)d (%) (a(m) =10 iff 22 | m or 32 || m), and the branch of the power

_2
function is chosen so that (1 — 4,1:6,) ® > 1 for Rz — oo.

Let D denote the complex plane with slits along half-lines (—ico — log(4m),
—log(4m)], where m € N, 23 |fm and 32 |y m.

Theorem 2. The function s(z) can be continued analytically to a meromorphic
function on D and satisfies the following functional equation

3(2) + 3(z) = A(2), (1.6)

where for £z > —log4

e? o e—2kzc2(2k)
7;-_2 Z (Ak—=2\rrar. v
k=1 \2g—1)s\Fh 7 1)

Afz) = —%ez(z+2’y—2%’(2))+ (1.7)

The only singularities of s(z) on D are the simple poles at the points z = logn
(n=1,2,...) on the real axis with residues

The function A(z) can be continued analytically to a multivalued analytic
function on C except for z = —logdm=iknr,m € N,23 |y m,32 |fm,k =0,1,2, ..,
where there are polar branch points of order two.

Let us now describe analytic character of S(z) using Theorems 1 and 2. It
turns out that these results can be considered as a complex form of the well-known
explicit formulae for 3°_ 0(n).

For z € H we have ;

S(z) = / s(u) du,
the path of integration being the halfline u = 2z + iy,00 > y > 0 and S(z)
is defined by (1.2). Hence S(z) can be continued analytically along every curve
lying on D and not passing through the poles of s(z). S(z) becomes a multivalued
function on D.
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In fact, every pole of s(z) becomes a logarithmic branch point for S (2). In
particular for |z —logn| <79, n=1,2,..., rg > 0 sufficiently small, we can write

S(z) = - oy )log(z—logn) + g(z), (1.8)

where g(z) is holomorphic in the disc |z — logn| < rg and depends on
of the particular branch of §.
For a real z let us write

F(z) = yEnJ+ RS(z + 1y). (1.9

=]
o™
=
&
¢l
-
Q
o
5

"ﬁ
3

It is obvious that this limit does exist, for every x which is a regular p peint o

z=logn,n=1,2,..., the limit exists as well by (1.8), since h my,_,o+ Arg(zy) 5.
Furthermore, since for any zg > 0 im0+ Arg(zo+iy) =0, lim, o+ Arg(—zo+

iy} = T arl d llxuy_,o—f- nfg(‘i,"y) , We ha‘ve

F(z) = 5(F(z +0) + F(z - 0)) (1.10)

|\3|>—l “"

for every real z, z # —logdm, m e N, 22 |fm, 32 fm.

Theorem 3. For z # logn, z # ~logdm, n = 1,2,..., m ¢ N, 23 Y m,
3% | m, the series 3 5o, Sk (:c) is convergent to S(z). The convergence is uniform
in every closed interval not contammg pomts of the form logn and —log4m. For
z=logn, n=12,..., theseries J r., RSk(z) is convergent to lim,, o+ RS(z +

iy) = F(z).

Theorem 4. For z > % we have
R 2(3) .
lim ) [(s — p)Fke ¢ (2):1:2 (1.11)
n—oo (k. — 1) dsks sC{ &)
Iopl<Tn V7 T RN PR
6 ¢’
=Ro(z) — w—zm(logm +2y~-1-2= (2))
11 i ¢2(2k + 2)z~
2 21 4k+2 :
2 (2k+1)(m+1)§ 4k 4+ 3)
where Ro(z) is defined by (2.1) below.
2. Lemmas
Let for £ >0
R(z) =} 8(n), Ro(z)=5(R(z +0)+ R(z - 0)) (2.1)
nge
The symbols p(n) and d(r) denote as usual the Mdbius function ""Id the number
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Lemma 1 (see [4], Theorem 9.4 and [2] Lemma 1). There exist positive constants
c1, ¢ and tg such that for T > ty, between T and 2T there exists a t satisfying

[C(o +it)|7! < czlogt for —1<0 <3 (2.2)

Lemma 2. For a sufficiently small positive € we have

Clo+it) = !O t'“e) for

| Otz ¢) for (2:3)

NN
VAN/AN
CJ-.’ ri:lw
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For the proof see [6] and [9].
We choose Ko > max(tg, 14) and let T,(n > 1), where

1K, < T, < 2"Kg

is such that
IC(J + iTn)I—l ~<\ Ca lOgcl Tﬂ)

(cf. (2.2)). Of course ((s) has no zeros on the line t = T,,. Moreover, by (2.2),
(2.3) and the functional equation of {(s) we have

¢3o + T—znz) 2

— = = O(T}? 24

C(20 + Thi) () (2:4)
uniformly for —i L0 < g

Let us now consider uniformity of the convergence of s(z) and S(z) (see
(1.1) and (1.2).

Lemma 3. The series s(z) and S(z) are uniformly convergent for y = Sz > 6 > 0
almost uniformly with respect to £ = Rz.

This lemma follows from (2.4). The proof is similar to the proof of Lemma
in [2].

[l

Lemma 4. Let wy, = a, +ib,, n =1,2,3,..., denote complex numbers such that
3 —~— /. P - ! -
lon| €A, 21, 5 Kby <) liMpoobn =00, T < by < Ty <Th < ...,

denote real numbers such that limp .o T, = 00, h,, n > 1 be the largest natural
number such that by, < T, and let f,(z), n=1,2,... be holomorphic functions
for &z > —4, (6 > 0). Moreover, let the series

=2 X f@)en

n=1T, | <bgT,
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converge for y = Sz > 0 and satisfy the following two conditions

o0 |
> Y fe(e)e )T = o(y7), N — o0, (2.5)

n=N-+1T, , <b:<T,

for y — 0% almost uniformly with respect to x = Rz, and

N
Z Z fk(z)e("’“h‘”’w\{)z =o(y 2),N — o, (2.6)

|n=1T!_, <bp<T,, |

for y — 07 also almost uniformly with respect to z = R2.
Then, if f is holomorphic at the boundary point zo € R, the series

converges to f(zg). Moreover, the convergence is uniform on every compact real
interval consisting of regular points of f only.

This result is a generalization of the classical theorem of M. Riesz [8]. The
proof is similar to the proof of Theorem 4.2 in [5].

o ay o m/ sxirhara &7 o s
Lemma 5. Let f be such as in Lemma 4 and let by, > T}, — C where C is an

absolute constant. Suppose that for certain zo € R we have
f(z) = glog(z — o) + hy(2)

for |z —xo| < ¢, 82 > 0, where g is a complex number and h;(z) is holomorphic
in the whole disc |2 — zo| < ro. Then for N tending to infinity

ur
> > Ju(mo)e™ = = —glog Ty — gy + hu(xo) + g to(l).
n=1T! | <b<T.

The proof is similar to the proof of Theorem 4.3 in [5].
Corollary 1. Let f be as in Lemma 5 and Rg = 0. Then

hm Rf(zo + ty) hm 4 Z Z Ji(wo)e™ e, (2.7)

n=1 T, 1 <be£T
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3. Proof of Theorem 1

Let us deﬁne the half-lines
: the half-line: s——-+zt oo>t20,
: the half-line; s = 2-}-1,t7 0<t< oo,

L1, fg: half lines symmetrical upon the real axis to L; and L respectively.
For z € H we have by (2.4)

2ris(z) = s1(2) + sa(2) + h{z), (3.1)
where
(s
s1(z) = _ %é—ie“ds, (3.2)
s2(z) = /L C(Z(sg “ds, (3.3)

and h is defined by (1.3).
Let us consider s; first. From the functional equation for ((s) we get

C2(s) sin? s — 2 sin? 2 ¢2(1 - s)
C(23) - r“(1- )P(ZS)—-—-——C(1 — 25).

Hence we can split the integral {3.2) into four integrals

51(2) = s11(2) + s12(2) + s13(2) + s14(2), (3.4)
where
_ 2 2 Cz(l — S) zs
s11(2) = =y sin’ 5 r (1 — s)T'(2s) - )e ds, (3.5)
1 42(1 ) ez ni+]
s12(z) = T 4An3/2 / L(1—s)l(s+ 2)C(1 — ) (shét 084)613,
i J‘ Q l s s(z—mi O
s13(z) = 13 ./Z I'(1-s)['(s+ )(i—_~% (z—witlog4)gs
s14(2) = : [ (1 —s)T(s -+ 1)5($fl s(z—witlog4) go
" 473/2 le_-—l 27¢(1 - 2s)
Since I'(s) = O(it|”_5 exp(—5it|}) (s = o + it),s11(z) is regular for Sz >

—m,812(2) for ¥z > —2m,s13(2) for Sz < 27 and syy(z) is regular for O <
Sz < 27,

Suppose z = z +iy,0 < y < 2r,z > —2log2. Applying Cauchy integral
theorem we obtain

— 1 . N 1 C (1 S) s(z—mi+log 4)
s14(2) = 73 2m;5:§[‘(1 )F(1+2)C(1~ i
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where the summation is taken over all singularities of I'(s + ) in the interval

(—00,—3). Hence

AN ZEDNCG R,
s14(2) = ie Zlgk(k—l)! C?%) o

SFELRED) @)

n=1{=1 k=0

_ie E QS pd) ()1 )“%
-8 ZZ n¥/22 " 4ni2e*

n=—1ii=—1
2 _3
_teT1 i a(m) (1 1 2
8 m3/2 4dme? ’
m=1 \ /

which gives analytic continuation of s;4(2) to 2 € D.

(3.6)

To compute s3(2) it is enough to apply the definition ¢ (s) in the half-plane

Rs > 1. Indeed, we have

[ &) oo
og ). 3 f(n)
sa(z) = E H(n)/L es(z7logn)gs — 32 E mEVET (
n=1 2 n=1

z—logn)’

Collecting (3.1) - (3.7) we get (1.5) and Theorem 1 follows.

4. Proof of Theorem 2

Let us consider the function

1 dkp—l r . e%szg2(

AN 1 N - k .l
=N 2 3k T T)iaE T [(s_p) pWJF

—T,<%p<0

defined for z € H = {z € C : Sz < 0}. We have

where

and h is defined by (1.4).

(3.7)

(4.1)

—
W
3™

~—

(4.3)

(4.4)



On some connections between zeta-zeros and square-free divisors of an integer 141

Expanding C‘(‘% in (4.4) into Dirichlet series and using (3.7) as the definition

of §3(2) for Sz < 0, it can easily be seen that

Sa(2) = —s2(2). (4.5)

T . (3 ] — . xr_ 1
Let us consider s; next. vve nave

§1(2) = §11(Z) + 512(2) + 513(,2) + 514(3), (46)
where
S11(z) = 2 sin? Es'f2(1 — 5)[(2s) Cl-s) . , (4.7)
w2 fg, 7" 2 (1= 2s)
. 2/
Sia(2) = : [ I'(1 — s\ (s+ l\ ¢ (1 S) s(z+mitlog4) .
\~J 47r3/2 le \ 7 \ 2/ C(I—QS)
' 1\ ¢2(1 — .
513(2) = — 1;,0 [_ F(l — S)F (3+ - gh( nsz s(z~m.+}og4)ds
Y JLL \ 27 ¢(1—2s)
L4 1 2(1 - i
1=t [t ar(sr }) Cm D pmimag
Vi1 \ </ B\ T a9y

and S;1(z) is regular for y < m,812(2) for y > —2m,813(2) for y < 27, and §14(2)
is regular for —2n < y < 0. Hence for —m < 8z < 7w we have

512(2’) = —512(2),513(2) == —513(Z). (48)

Similarly as before using the Cauchy integral theorem, we get for —27 < Sz <0,
Rz > —2log2

S14(2) = s14(2)

N7

Finally for |y| < 7,2 € D by (3.1), (3.4), (4.2), (4.5), (4.6), (4.8) and (4.9)

we obtain

———
=
LS——

I _ 1 _ 1
s(2) +3(2) = 5—(R(2) + h(2)) + 5—(s11(2) +5811(2)) + —s1a(2).  (4.10)
Moreover, by the theorem of residues, using (1.3) and (1.4) we have for all z

Cz(s) 28 _ _ 0O..r e’ IOV Y CI

h(z) + h{z) = —2miRes,_ e = =2mi——(2 + 2v — (2)). (4.11)
(%) (=) 1C(23) 6(2)\ 2 C( }) ( J
Thus for z € D, |y} <7 by (3.6) and (4.11) we have
- e* ¢ 1
s(z) +3(2) = (_(2) —(z+2y—-2> (2)) + —(sll(z) +3511(2)) (4.12)
+ e — a(m) 1 1 ~3
87 m3/2 4me= ’

where s11(2) + S11(2) is holomorphic for |y| < 7.
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Suppose z = r + iy, |y| < T,z > —2log2. Applying the Cauchy integral
theorem we obtain

. i 21—
811(2) + 8511(2) = %%:Resszw sin? §51“2( — 5)['(2s) C({ —- ;ezs

where the summation is taken over all singularities of ['(2s) lying on the half-line
(—c0,—3]. Therefore

1 _ ez 2 Cz(zk) e~ 2kz
—(s11(2) +811(2)) === Y (4.13)
7 (& G

- * e = (2(2k)e 2k ,
£\ =40\ [y 3 I = 7
s{z) +3(z) = — 2+ 2y-2=2)+—= — (4.14
E) U TE LAy Y
= A(z)
We write
i 42(2]&‘)8_2’”‘ B( )
— = B(z
k=1 (;:—?)4(4]“ - 1)

The function B(z) is holomorphic and periodic, with period 7¢ on the half-plane
Rz > 2log2 Hence from (4.12) and (4.14) the function A(z) can be continued
analytically to a multivalued analytic function on the whole complex plane C
except for z = —logdm + ikn, k =0,1,2,..., m € N, 22 |y m, 32 [V m, where
there are polar branch points of order two.

If p is a complex zero of ((s) then so is 5. Hence for z € H we get s(z) =
5(Z). Next using (4.14) we have (1.6) and the function s(z) can be continued
analytically to a meromorphic function on D.

5. Proof of Theorem 3

Let us number the complex zeros of ¢(s) lying on H according to increasing
Hnagmary parts: P1,pP2,pP3,... and in case of eaua.l 1ma.q1na.rv parts accordl_na to
increasing real parts.

Let phy = Ony + ith, be the last zero be fore the line T = T .

Vi, S B o S | 4 Pl
First we verify condition (2.5) of Lemma 4. Let us define the contour C,

o

consisting of the following four parts:
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C}: the line segment: s = o + iT"Z“‘,—i <0< 3,
C2: the line segment: s = % + it, T“z“ <t %,
C3: the line segment: s = o + i%, % Z0o2 —%,
C3: the line segment: s=—1 41t S22tz T“z“

S 1 dot [(s—peetCommi2g)] |
2 (k, — 1)1 ko1 5C(s) ) R
n=N+1T, 1<9p<T, P ’ L s=p
= L ] S hGomam )=
oyl e 2s)
exlel (1 1 & L)
_—— - _ —‘511. — -2

for y — 0% almost uniformly with respect to z.
Similarly one can prove that

S e [ (s—p)"ve%“—w)zc%%)] I 62
(k, — 1)! dske—1 s((s) '
""v 1T 1<Jp<1 L Js:pl

3ix|

" (ST‘ 2+AL)=o(lyrQ) (N — oo)

[ e Lk
9N —e/T3 z 3

for y — 0~ almost uniformly with resect to z = Rz. Hence by Lemma 4 and
Theorem 1 the series . ; Sn(z) converges to S(z) for z # logn, = # —logdm,
n=1,2...,meN, 22 }m, 32ym.

The second part of Theorem 3 follows from (1.8) and Corollary of Lemma. 5.
Therefore Theorem 3 is proved.

6. Proof of Theorem 4

Suppose first that £ > ; and z € N, so that s(z) is regular at z = logz.
Moreover, let —logz < a < 2log2. We have

W [r

S(logz) = S(~a) + j:s(z)dz,

where { = i(—a,logz).
By the theorem of residues and Theorem 1 we obtain

r

/ls(z)dz - j;s(z)dz = —2mi Z Res;—10g n5(2) = Ro(z). (6.1)

ngT
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Moreover, using the functional equation (1.6) we get

' f f — —
jis(z)dz = j[ s(z)dz = jg(_S(Z) + A(z))dz (6.2)
logx
= —jrs(z)dz + jf A(E)dE
l —a
Combining the above equalities we arrive at
[}Ogm
2RS(logz) — 2NS(—a) = Ro(x) —1—j A(t)di (6.3)
-—a
6z ¢’
=Ry (z) — —,,(logm —1+2y-22(2))
¢
1 & C?(2k) )2 6e~2
- — — a+1-2vy+ 2 2
L G D@ - W )
1 & 42(2k)6(2k—1)a.
+ 2 y: /4): 2\ ey

Hence, by Theorem 3 we get

oS

2F(log z) — 2F(—a) =Ry(x) — %(logm +2y-1-— (2)) (6.4)

—»% “lat1- 27425 (2))

1-2k _ e—a(l—zk))

C2(2k) (z
w2 Z (2k — 1) (3-2)¢(4k — 1)

\2k—1/

Let N be a positive integer and let Cy ,, denote the rectangle with vertices
AT 5 1 ‘T, 3 T., 3 T

-t g -1, 5 - é,z—rz—‘ana—.{v{— +z—k. 1nenIor—<y<L,we
have
2
im [ YCE _,
f:fj;ojc,\, s((2s)

and by the theorem of residues

€8s=0 (ysgz 8)\ +R ( ) +n11_>120 S—‘ Res:— (ch;zs) ) 5)

IQ‘Pl(Tn

+ lim R XS =0
N—»ooL ess_-_k (28) )
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Therefore
1 1y ¢’ o
4(2) (logy — 1+ 2y — 2= (2)) (6.6)
1 1*?"42(%) e 0
e @ @ ek =0

Hence, from (6.4) and (6.6) for y = e~ we have (1.11).
Now, let z be a positive integer, then logz is not a regular point of s(z).
From Theorem 3 we obtain

F(logz) =F(z+0)+ F(z —0) = R(z+0) 42— R(z —0)
¢ 1
— pllogz +27-1-2%(2) +5
! i (2K 1 2)

and the proof is complete.
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