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ON THE SUM OF A PRIME AND A k-FREE NUMBER
ALESSANDRO LANGUASCO

Abstract: We prove a refined asymptotic formula for the number of representations of sufficien-
tly large integer as a sum of a prime and a k-free number, k = 2.
Keywords: prime numbers, k-free numbers.

1. Introduction

The problem of counting the number of representations of an integer as a sum of a
prime and a square-free integer was first considered by Estermann (3] in 1931. He
obtained an asymptotic formula that was subsequently refined by Page [11] and
then by Waifisz [13] in 1936. In 1949 Mirsky [10] generalized such results to the
case of the sum of a prime and a k-free number, where k > 2 is a fixed integer.
He obtained, for every A > 0, that

ri(n) = Z te(n — p) = Gk (n)li(n) + O(—%—) as n — 400, (1)

pn log” n

where pp(n) = Yk, (@) is the characteristic function of the k-free numbers,

p(n) is the Mébius function, li(n) = [’ kﬁ% and

1

vt =11 (1~ jrery—) @

pin

is the singular series of this problem.

The aim of this paper is to prove a refinement of Walfisz-Mirsky asymptotic
formula (1). This refinement depends on inserting a new term connected with the
existence of the Siegel zero of Dirichlet L-functions (see Lemmas 1-2 below) and
by sharping the error term in the asymptotic formula.
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Denoting by A(n) the von Mangoldt function, we define

Re(n) = ) A(m)ux(n —m)

mgn

to be the weighted number of representations of an integer n as a sum of a prime

and a k-free number. As usual Ry, is easily related with ry. We have the following
here exists a constant ¢ = ¢(k) > 0
ave

Theorem. Let k > 2 be a fixed inte Thean

o +
heorem. Le € & IIXCq Heger, inen ti

o

such that, for every sufficiently large n € N, we

ns

Ri(n) = (n - 555{(n)—ﬁ-)6k(n) + Ok (nG exp(—cy/log n)),

where E is the Siegel zero, X is the Siegel character, T is the Siegel modulus
associated with the set of Dirichlet L-functions with modulus ¢ < exp (c’v/Iog n),
where ¢’ = c’(k) > 0 is a suitable constant

G = { (1-— 5)\/1ogn jfE exists 5
- ]

< _ { 1 jfé exists
1 if 3 does not exist,

1o if B does not exist

(see also Lemmas 1-2 below).

An analogous result, but with a weaker error term, can also be obtained
via the circle method using some recent results on exponential sums over k-free
numbers proved by Briidern-Granville-Perelli-Vaughan-Wooley 1.

Acknowledgments. We wish to thank Professors Jérg Briidern and Alberto Pe-
relli for some useful suggestions and Professor Doychin Tolev for some discussions
on this topic.

2. Lemmas

Dirichlet L -functions.
Lemma 1. [Davenport [2], §13-14] Assume T’ > 0. There exists a constant ¢; > 0
such that L(o + it,x) # 0 whenever

4]
21— —— t<T
? logT"’ 4 <

for all the Dirichlet characters y modulo ¢ < T', with the possible exception of
at most one primitive character X (mod 7), 7 < T'. If it exists, the character X is
real and the exceptional zero E of L(s,X) Is unique, real, simple and there exists
a constant ¢y > 0 such that

Co ~ 4]

— L 1-8<——  |<T.
?‘1/210g2F\ 5\ lOgT” l|\
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Fix now 71 > 0 such that log Ty < y/logn. According to Lemma 1, applied
with 7" = T}, we denote by § the Siegel zero, X the Siegel character and by 7 its
modulus. Let now

o it F<T

T 1 Tll/4 otherwise.
Now Lemma 1 remains true for 77 = T, with a suitable change in the constant ¢; .
In the following we will continue to call ¢; this modified constant. Hence 7 < T2l A
if it exists. From now on we set T == T5.
Moreover we need also the following form of Deuring-Heilbronn phenomenon
whose proof can be found in Knapowski [9], see also §4 of Gallagher [5].

Lemma 2. Under the same hypotheses of Lemma 1 applied with T’ = T, if 5
exists, then for all the Dirichlet characters x modulo q < T, there exists a constant
c3 > 0 such that L{o +it,x) # 0 whenever

C3 €Cq
o=1- lo ( -~ ), <7
logT ° (1-08)logT i

and E is still the only exception.
The next Lemma is the explicit formula for ¥(z, x).

Lemma 3. [Davenport (2], §19] Let x a Dirichlet character to the modulus ¢ and
2<T <z Then

0
Z A(m)x(m) =8,z — 5x ;1‘7 - Z il + O(%log2 gz +z'/*log z),
m<a B e

where 8, = 1 if x is the principal character, d, = 0 otherwise, Jx 5= lifx=x%x

. !
arurign and S ccaac thiot Ll e mrire merme 2 e v ey g d 3 T
herwise and ), means that the sum runs over the non-exceptional

We will need also a zero-density result for Dirichlet’s L-functions.

Lemma 4. [Huxley [7] and Ramachandra [12]] Let x be a Dirichlet character
(mod q) and N(0,T,x) ={p=8+1iy: L(p,x) =0,8> o and |y| < T}|. Then,
for o € [1/2,1], there exists a positive absolute constant ¢4 such that

> N(o, T, x) < (qT)1?/51=9) (log qT)**. (3)
X
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3. Proof of the theorem
Following Walfisz [13] and Mirsky [10], we have

Re(n) =Y A(m) > ,u(d,)zY‘A(m\[ >oooud+ Y ,,(d)}:

A Ly TV |_ fnd ~
msn d*{(n—m) mgn d*|(n—m) d*|(n—m)
d<D d>D
= > u(d) > Am)+ ) u(d) Y A(m)= (4)
dsD mgn d>D mgn
d*{(n—m) d*|(n—m)
= ) wdy(nid*,n)+ Y u(dyp(n;d*,n) = A+ B,
d<D d>D
say, where y(z;q,a) = > A(m) and 1 < D < n'/* will be chosen later
m<z

m=a (mod q)
in (12

)

/-

First of all, we estimate B. By Brun-Titchmarsh Theorem, see, e.g., Fried-
lander-Iwaniec [4], and Theorem 328 of Hardy-Wright [6], we get

logl
Zw(n d* n) <« Z Z loglog d < nD'"*loglogD. (5)
d>D

d>D d>D d*

Then we remark that, if (d,n) > 1, we have ¥(n;d*,n) < log(dn) and
hence

(Dn)). ®)

We now insert ¢(z;q,a) = v_(lﬂ 2 (mod ) X(@)¥(z, X) in (6). Hence, by Lemma
3 and the previous remarks, we get

u(d ~ T ' n*”
Z o) [n - (SE’X(TL)T - Z X(n) Z
d<D 8 X (mod d*) lpl<T

XEX0:X

= (n- 5 ) > Z Y xm X

d<D asD x (mod d*) lpl<T p
(d,n)= (d,n)=1 X#XO,;
+ o( > (% log?(d*n) + n'/* log n)> + Ok(Dlog?(Dn)) =
dg
(d,n)=1
=% +5; + X 7

~—

W
-
—~




On the sum of a prime and a k-free number 23

Evaluation of Xj.

To evaluate the singular series we use again Theorem 328 of Hardy-Wright [6],
thus obtaining

1 -
A ga(dk - Z /‘ ZD <P(d’°)) = 6k(n) + Ox(D'*loglog D)
d< d>

(d,n)=1 (a n) 1
by the Euler identity and (2). Hence we easily get

Ty = (n - 6~x )Gk(n) + Or(nD'"*loglog D). (8)
\

Estimation of Xs.

Writing p = 3 + iy we have

’ nﬁ ] TLB
Yo < Z dk) Z Z 5P| Z (p(q) Z Z |p| (9)
a<D X (mod d*) lel<T g D* x (mod g) {o|<T
(din)=1 XEX0X (@m)=1 XF#X0:X

Now, to estimate X,, we first split the summation over p according to
0 <|pl €1 and 1 < |p| < T. Arguing as in §20 of Davenport [2] and using
Lemmas 1-2, we get

1
—Tj Z E — << n!=fM 1og? n, (10)
LA x (mod g) 0<|pl<1
X#X0,X

where f(T) = 5 gT if the Siegel zero does not exist or f(T') = longOg (—v-‘—'—(1 ~ 1ho)

if the Siegel zero exists.

In the range 1 < |p| € T, we follow the line of §12 of Ivi¢ [8]. Recalling
emmas 1-2 and 4 and ‘T‘hmrnm 398 of Hardv_Wncr ht 6} we have, for D*¥ LT,

Theorem 328 of Harqy
that

t“

— & (log®t3 max n° max (gt 12/5(1-0)—1 1
X'é;‘q) 1<|zpl:<T (log )1/2<a<1-f(T) 1<:<T( ) (11)

X#X0,X
where f(T) is as in (10).

T =D%* and T =exp(Cy/logn), (12)
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where C > 0 is an absolute constant, we split the interval over ¢ in two parts: the
first one is for o € [1/2,7/12] and the second one is for o € [7/12,1 — f(T)]. In
the first case the maxima are attained at t =T and ¢ = 7/12 and in the second
case they are attained at t =1 and ¢ = 1 — f(T). The total contribution of (11)

< (7112 4 1= HTNT1/2 16gE o T1/21-4(T) logZn, (13)

where E > 0 is a suitable constant, not necessarily the same at each occurrence.
An analogous argument for (10) gives the same estimate. Hence, by (10) and
(12)-(13), we obtain

Sy <« T2 =) 1ogB . (14)

If the Siegel zero does not exist than we have

logn

Yy <k TY?n exp(—c; lOgT)logE n, (15)
while, if the Siegel zero exists, we get
logn €cy E
o < T ?nexp ( - lo - ) log™ n <«
2 Kk 3logT g((1~ﬁ)logT) g
~ logn
1/2 E
< TV n[(l — B)log T] exp(—c3 lOgT)log n, (16)

and hence, combining (15)-(16) we finally have

logn

X« Tl/znGexp(—c5 )logE n, (17)

T
g4

1~
10

where c5 = min(cy;c3) and

G = { (1-3)viogn if,g exists

1 if 3 does not exist.

Estimation of X3 and the final argument.
Recalling T = D% and T = exp(C+/logn), we get from (17) that

Yy <, nGexp(—cgy/logn), (18)
with
C =5 and cg=/c5/3. (19)

From (8) we obtain

%) = (n ~ 35%(n) )Gk(n) + Ok (n exp(—C%vlog”))- (20)
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Moreover, the error terms collected in X3 can be estimated as follows:

D
Ss < ”—T— log?(D*n) + n}/*Dlogn + D log?(Dn) <«

<, mexp(— C——\/logn (21)
Hence, if the Siegel zero does not exist, inserting (18)-(21) into (4)-(5) and
(7) we have the Theorem with ¢ = C"‘B;1 provided that C < —3—_"Tc6 (which holds
by (19)).
If the Siegel zero exists, we remark that
g ] n ~ ~
N T _ _
n-¥n)=2n- = = [ (L= t?"Ndt + O(T) > n(1 - T57 1) + O(T) >
3 8 Jr
> Gn + O(T)

and, by Lemma 1, that

Viogn

G>» ——"5—=
71/2 log? 7

k-1 —
> exp(—C—El?—\/log n),

since 7§ T4 = exp((C/4)\/logn)
Prov1ded that C < c(; (which holds by (19)), the Theorem follows also

in this case with ¢ = C'ka by inserting (18)-(21) into (4)—(5) and (7).
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